

International Journal of PharmTech Research CODEN (USA): IJPRIF ISSN : 0974-4304 Vol.3, No.3,pp 1625-1629, July-Sept 2011

Synthesis and Evaluation of Biological activities of Thiosemicarbazones derivatives

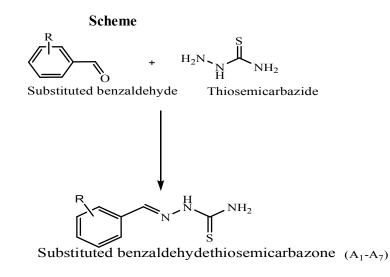
Ruchi Singh¹*, Prem Shanker Mishra², Rakhi Mishra¹**

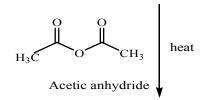
¹College of Pharmacy, IFTM University, Moradabad, India ²Department of Pharmacy, MIETMeerut-250005 India

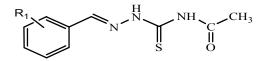
**Corres. Author: rakhi.misra84@rediffmail.com, Tel:9457380736

Abstract: A series of thiosemicarbazones($A_1, A_2, A_3, A_4, A_5, A_6, A_7$) have been synthesized by treating thio - semicarbazide with different substituted aromatic aldehydes and then these compounds were further treated with acetic anhydrides to obtain acylated compounds ($B_1, B_2, B_3, B_4, B_5, B_6$ and D_1, D_2) respectively. The structures of the compounds were characterized on the basis of their IR and ¹H-NMR data. All the synthesized compounds were evaluated for antibacterial, antifungal and locomotor activity.

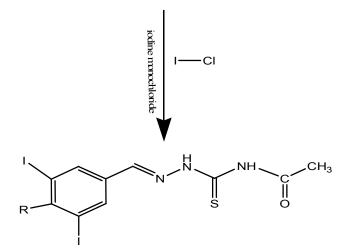
Key words: Thiosemicarbazones, antibacterial, antifungal and locomotor.


Introduction


Semi carbazones was initially used in the synthesis of antibacterial sulfathiazole¹. Subsequent testing of isonicotinic acid hydrazide, destined for the synthesis of a particular thiosemicarbazone, revealed the powerful tuberculostatic activity of the precursor which has since become a major antitubercular drug ². The small synthetic program reported here depends on the similarities of the synthesized compounds with a known reference structure. The reference selected in this case is the thiosemicarbazone structure. A thiosemicarbazone is a very useful intermediate for the development of molecules of pharmaceutical or


biological interest³.

Experimental


All protocols of animal experiments have been approved by the Institutional Animal Ethics Committee (IAEC). Most of the solvents used were of L.R grade and purified before use in different reactions. Chemicals used were obtained from Central Drug House Pvt. Ltd. (CDH). The melting points of synthesized compounds were determined by melting point apparatus and were uncorrected. All the reactions were monitored on thin layer chromatography (TLC) prepared by using silica gel G.

substituted (E)-4-acetyl-1-benzylidenethiosemicarbazide (B_1 - B_6)

substituted(E)-1-(3,5-diiodobenzylidene)-4-acetylthiosemicarbazide (D₁-D₂)

S.NO	CODE	R	MELTING POINT °C	%YIELD
1	A_1	Н	161-162	81
2	A ₂	4-CH ₃	120-121	96
3	A ₃	3-NO ₂	227-228	78
4	A_4	4-OH	225-226	50
5	A ₅	$4-N(CH_3)_2$	189-190	78
6	A ₆	3-OCH ₃ -4-OH	218-219	80
7	A ₇	2-furyl	181-182	70

Table1-Physical properties of synthesised compounds (A₁-A₇)

S.NO	CODE	R	MELTING POINT °C	%YIELD
1	B_1	Н	169-170	30.20
2	B ₂	CH ₃	168-169	62.15
3	B ₃	NO ₂	234-235	43.75
4	B_4	4 - OH	209-210	46.91
5	B ₅	4-N(CH ₃)	201-202	37
6	B ₆	2-furyl	195-196	48.22

Table2-Physical properties of synthesised compounds (B_1-B_6)

Table3- Physical properties of synthesised compounds (D_1-D_2)

S.NO	CODE	R	MELTING POINT °C	%YIELD
1	D ₁	4 - OH	229-230	48.2
2	D_2	$4-N(CH_3)_2$	264-265	35.6

Synthesis of benzaldehyde thio semicarbazone compounds (A₁-A₇)

A solution of 0.05 mol. Substituted benzaldehyde in warm alcohol (300 ml) and a solution of 0.05 mol thiosemicarbazide in 300 ml water were mixed slowly .The product, which separated, was filtered off after cooling and recrystallised from ethanol. The purity of compound was checked by the TLC. Other thiosemicarbazones were prepared in the same way.

Synthesis of substituted 4 acetyl 1 benzylidinethiosemicarbazide (B₁-B₆)

In a 100 ml round bottom flask 4 g of an aromatic aldehydethiosemicarbazone and 30 ml acetic anhydride were heated for 2 hr on a water bath at temperature of 80- 90 °C. At the end of the reaction, the solution was poured on crushed ice and the separated solid was filtered, washed with water, dried and recrystallised from ethanol. The purity of compound was checked by the TLC.

Synthesis of substituted (E)-1-(3, 5-iodobenzyl - idene)-4-acetylthiosemicarbazide (D_1-D_2)

In warm glacial acetic acid (3 ml), 0.5 g of acylated product was added slowly with continous stirring and 1.2 g of iodine monochloride was dissolved in dilute HCl (4 ml). After this it was diluted with 25 ml water and warmed up to 90°C for 15 min., cooled to room temperature and filtered. Di-iodo product was purified by dissolving in dil. NaOH and ppted by dil. HCl and recrystallised by ethanol.

<u>Spectral data</u>

A_1

IR(KBr) Vmax cm-1 :3422(N-H Streching),1591(C=C Streching),1227(C=S Streching).1543(C=N Streching);1H NMR(DMSO):7.5(5H),1.6(2H),7.4(1H) A₂

IR(KBr) Vmax cm-1 :3424(N-H Streching),1593(C=C Streching),1229 (C=S Streching).1540(C=N Streching);1H NMR(DMSO):7.8(5H),1.4(2H),7.7(1H)

A_3

IR(KBr) Vmax cm-1 :3420 (N-H Streching), 1597 (C=C Streching),1220(C=S Streching). 1546(C=N Streching); 1H NMR (DMSO):7.5 (5H), 1.7(2H), 7.3 (1H)

A_7

IR(KBr) Vmax cm-1: 3406(N-H Streching),1582(C=C Streching),1227(C=S Streching).1687(C=N Streching); 1H NMR DMSO):6.3(3H),1.6(2H),7.5(1H)

\mathbf{B}_3

IR(KBr) Vmax cm-1: 3216(N-H Streching),1699(C=O Streching),1235(C=S Streching).1636(C=N Streching) 1527(N=O); 1H NMR (DMSO):7.6(4H), 2.2(2H), 8.1(1H),2.2(3H)

B₄

IR(KBr) Vmax cm-1: 3219(N-H Streching),1777(C=O Streching),1264(C=S Streching).1705(C=N Streching)3219(O-H Streching); 1H NMR (DMSO):6.8(4H),2.1(1H),8.9(1H),2.2(3H),5.0(1H)

\mathbf{B}_5

IR(KBr) Vmax cm-1: 3209(N-H Streching),1698(C=O Streching),1290(C=S Streching).1520(C=N Streching); 1H NMR (DMSO):6.6(4H),2.1(1H),8.1(1H),2.1(3H),2.2(6H).

Biological activity

Antimicrobial activity

The synthesized compounds were screened *in vitro* for their antibacterial activity against pathogenic organisms *bacillus subtilis* and *E. coli* using ofloacin as standard at a concentration of 50 and 100 μ g/ml with DMF as the solvent. The activity data is given in table4 and table 5.

Locomotor activity

The synthesized compounds were tested for locomotor activity by actophotometer apparatus. Healthy male albino mice of approximately same age, weighing about 25-30 gm were used and were divided in to 3 groups. They were maintained under standard conditions (12 hr light/ 12 hr dark cycle, 25 ± 30 C, 36-60 % humidity). One group served as positive control⁵ (received chlorpromazine 3mg/kg; i.p), one group as negative control (received 5% gum acacia 5 ml/kg) and rest of the groups received test compounds (80 mg/kg orally. The sedative hypnotic activity of mice was observed by recording actophotometer readings after every 30 mins for 120 mins and is shown in Table6.

 Table 4: Antibacterial activity data of synthesized compounds

COMPOUND	Zone of inhibition in mm				
CODE	B. subtilis (MTCC-441)		E. coli (AT	E. coli (ATCC-11775)	
	50 μg 100 μg		50 µg	100µg	
A ₁	20	16	21	17	
A_4	14	12	13	12	
B ₂	19	17	22	18	
B_3	21	18	22	20	
B ₅	22	18	16	14	
B_6	20	13	20	17	
Control	-	-	-	-	
Ofloxacin	26	21	25	24	

Table 5 Antifungal activity data of synthesized compounds

COMPOUND	Zone of inhibition in mm					
CODE	A. niger	A. niger		IS		
	50 μg	100 µg	50 μg	100µg		
A ₁	7	6	8	7		
A_4	12	9	10	11		
B_2	11	17	12	18		
B ₃	9	8	8	6		
B ₅	13	11	15	14		
B ₆	9	12	13	11		
D_1	14	10	10	9		
D_2	13	9	11	7		
Control	-	-	-	-		
Fluconazole	22	21	25	23		

1	629
-	025

TREATM	DOSE	30 MINS	60 MINS	90 MINS	120 MINS
ENT					
CONTROL	5 ml/kg	98 ±	59 ±	55.54 ±	56.58 ±
		4.5	2.9	2.3	2.6
CHLORPR	3 mg/kg	92.81±	93.83±	92.79±1.74	156.6±
OMAZINE		3.31	3.31	.23	2.92
A_1	80 mg/kg	62.3±	$60.5 \pm$	94.3±	168±
		2.24**	0.76*	1.92*	2.61**
A_2	80 mg/kg	71±	52.3±	87.67±	177.5±
		3.48**	1.71*	1.6*	1.84**
B_1	80 mg/kg	66.3±	93.67±	133±	78.83±
		2.67*	4.145*	3.9**	2.62**
B ₂	80 mg/kg	65.83±	39.3±	88.6±	137.3±
		2.07**	1.41*	2.33*	1.81**
B ₃	80 mg/kg	53.5±	56.67±	77.67±	126±
		2.29**	1.43*	2.27**	2.25**
B ₄	80 mg/kg	83.16±	41.16±	124±	156.67±
		6.44**	2.96*	5.56**	1.94*

 Table 6: Locomoter activity data of synthesized compounds

P < 0.001, considered extremely significant.* - P > 0.05,**- P < 0.01

Result and Conclusion

In actphotometer method amongst the entire tested compounds acylated compound showed better activity than thiosemicarbazones, a few showed activities even better than standard. From the antifungal activity data, it was found that the synthesized compounds exhibited mild to moderate antifungal activity against A. Niger and C. albicans at a concentration of 50μ g/ml and 100μ g/ml

It has been found that compounds A_1 , A_4 , B_2 , B_3 , B_5 , and B_6 showed significant activity against both of strain as compared to Ofloxacin. B_6

References

- Parekh A.K, Desai K.K., Indian Journal of Chemistry "Synthesis and antibacterial activity of thiosemicarbazones" vol45b, april2006, pp-1072-1075.
- Pandeya S.N, aggarwalN, Jain J., "Evaluation of semicarbazones for anticonvulsant and sedative-hypnotic properties" 1999 Apr, pp-300-302.
- 3) Wang Cun-De,Lu JunShi, Xin-zhong, Feng Yun-hua,"international journal for rapid

compound was found more potent as compared to other synthesized compounds against gram positive *Bacillus subtilis* in non dose-dependent manner. The solvent control i.e DMF did not show any activity.

Acknowledgement

The authors are thankful to Dr S.Riaz Hashim for providing all necessary information and guideline during the research work. Research work meets success by the help of neeti, anupam, and jitendra at each and every step of work.

communication of synthetic organic chemistry",vol29,1999,pp-3057-3061.

- 4) Ratna Kumari Y., Rajitha B., Rao M Kanakalingewara., "Indian Journal of Heterocyclic Chemistry", Vol-4, 1995, pp-305-306.
- 5) Smitha Sivakumar., Pandeya S.N, P. Stables James, "Anticonvulsant and Sedative-Hypnotic Activities of N-Acetyl / Methyl Isatin Derivatives"Scientia pharmaceuticals, pp-621-624.