

International Journal of PharmTech Research CODEN (USA): IJPRIF ISSN : 0974-4304 Vol.3, No.3,pp1303-1304, July-Sept 2011

Antibacterial activity of Cellulose-Chitosan Composite incorporated with Silver nanoparticles

M.I.Niyas Ahamed^{*1}, T.P.Sastry², and P.Mohammed Kashif¹.

¹Department of Biochemistry, Islamiah College (Autonomous), Vaniyambadi, India.

² Bio-Products Division, CLRI, Adyar, Chennai.India

Abstract: A novel biocomposite material was prepared using cellulose-chitosan by employing regenerative technique. Silver nanoparticles also incorporated in this composite. The antibacterial activity of cellulose-chitosan composite incorporated with silver nanoparticles (C-Ch-Ag) was evaluated against some Gram-positive and Gram-negative bacteria.

Keywords: Cellulose: Chitosan: Silver nanoparticles: Antimicrobial activity.

1. Introduction:

A novel biocomposite material was prepared using cellulose-chitosan by employing regenerative technique. Silver nanoparticles also incorporated in this composite, its antibacterial activity was evaluated against some Gram-positive organisms include Staphylococcus aureus, the gram negative organisms include Escherichia and coli Pseudomonas aeruginosa. Chitosan¹ and silver nanoparticles² posses potent antimicrobial activity against various pathogens individually. The present study has been undertaken to ascertain the antibacterial activity of this biocomposite.

2. Materials and Methods.

2.1 Preparation of biocomposite material.

Cellulose was dissolved in NaOH- Thiourea solution according to a novel method and 2% chitosan solution was poured to this dissolving agent. Finally add 10μ g/ml silver nanoparticle to this composite. Then the dried samples were cut like as antibiotic disc.

2.2Antimicrobial activity

Antimicrobial activity was tested using various microorganisms with Gentamycin (10 μ g/ml) as standard (Table-1) by cup plate agar diffusion method ^[3-5]. The organisms selected for antimicrobial activity were *Staphylococcus aureus*, *Escherichia coli* and *Pseudomonas aeruginosa*. The plates were incubated at 37°C for 24 hr. and the diameter of zone of inhibition was measured.

locomposite			
S.	Name of the	Gentamycin	C-Ch-Ag
N.	microorganism	(mm)	Biocomposite
			(mm)
1.	Staphylococcus	18	20
	aureus,		
2.	Escherichia	15	17
	coli		
3.	Pseudomonas	22	25
	aeruginosa		

 Table. 1. Antimicrobial activity of C-Ch-Ag

 Biocomposite

*Values are means of three replications.

Results and Discussions

The C-Ch-Ag biocomposite exhibited strong activity against various bacteria studied (Table. 1) and the zone of inhibition was comparable with the standard drug. Chitosan¹ and silver nanoparticles² have been reported to possess potent antimicrobial activity individually. Since the C-Ch-Ag biocomposite also posses the antibacterial activity. The different mechanisms proposed to explain C-Ch-Ag biocomposite's antimicrobial activity include extracellular inhibition of microbial enzymes, deprivation of the substrates required for microbial growth or direct action on microbial metabolism through inhibition of oxidative phosphorylation. A further mechanism involving iron deprivation is

References

- Tsai GJ, Su WH. Antibacterial activity of shrimp chitosan against *Escherichia coli*. J Food Prot 1999; 62: 239-43.
- Sondi I and Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study of *E. coli* as a model for gram-negative bacteria. J Colloids Interface Sci 2004; 275: 177-185.

proposed. But further studies are required to assay the exact mechanism of action.

Conclusions:

Based on these results it is possible to conclude that C-Ch-Ag biocomposite has promising antimicrobial activity. In future this biocomposite can be used as a wound dressing material on experimental animals.

Acknowledgments

The authors would like to thank Correspondent and Principal of Islamiah College (Autonomous) for provided the necessary facilities.

- Pelczer M.J, Chan E.C.S. and Krieg N.R.1993 Microbiology, 1st Ed., McGrew Hill, New York, 578.
- 4. Pharmacopoeia of India, 1996. Controller of Publications, Ministry of Health and Family Welfare, Government of India, New Delhi, A-105.
- Mmackie W and Mccartney L. 1989. Practical Medical Microbiology, 13th Edition, Churchill Livingstone, Edinburgh, London, 162.
