International Journal of ChemTech Research CODEN(USA): IJCRGG ISSN: 0974-4290 Vol. 3, No.3, pp 1416-1420, July-Sept 2011 # Synthesis, Characterization and Antibacterial activity of 3-(6,7 substituted-1,3-benzothiazol-2-yl)-4-(4-substituted phenyl)-1,3-thiazolidin-2-one derivatives Ved Prakash Yadav*, U.V.S.Sara¹, V.K.Sharma¹, U.K.Singh² ¹D.J.College Of Pharmacy Modinagar, Ghaziabad,India. ²Subharti University Kharval College Of Pharmacy, Meerut,India. > *Corres.author: vedpharmacist@gmail.com Contact No. 9368433294 **Abstract**: Disubstituted 2-aminobenzothiazole derivatives (2) have been prepared from disubstituted aniline (1) in presence of potassium thiocynate, bromine, glacial acetic acid and ammonia solution. It has been reacted with various aromatic aldehydes (3a-g) to afford Schiffs base derivatives (4a-g). Further, these schiff's bases are refluxed with thioglycolic acid in presence of DMF to afford 3-(6, 7-substituted-1,3-benzothiazol-2-yl)-4-(4-substituted phenyl)-1,3-thiazolidin-2-one derivatives (5a-g, 6a-g, 7a-g, 8a-g, 9a-g, 10a-g). The title compounds and their derivatives have been characterized by their spectral data. The synthesized compounds were screened for their antibacterial activity against *Staphylococcus aureus*, *Bacillus substilis Escherichia coli* and *Pseudomonas aeruginosa*. Keywords: Benzothiazole, Schiff's Base, Antibacterial Activity. ### INTRODUCTION Literature survey reveals that 2-aminobenzothiazole possess various pharmacological activities like diuretic, anti-ulcer, anti-histaminic, anticancer, anticonvulsant, antileishmanial, antidiabetic, antituberculosis. Based on the importance of 2-aminobenzothiazole and their biological activities. The synthetic approach to the title compounds is outlined in scheme. ### **EXPERIMENTAL** Melting points were determined in open capillaries in liquid paraffin and are uncorrected. Purity of the compounds was checked by percolated TLC using Silica gel G as stationary phase and benzene: ethanol (9:1) as mobile phase. IR-spectra (KBr) were recorded on Shimadzu-IR 400 spectrophotometer and ¹H-NMR spectra in DMSO-d₆ on Brucker Avance II- 400MHz using TMS as internal standard. Yields, melting points, R_f values, and molcular formulas are mentioned in Table I. The compounds were screened for antibacterial activity against *Staphylococcus aureus*, *Bacillus substilis Escherichia coli* and *Pseudomonas aeruginosa* by Cup-plate method. All the observations are given in Table II. ### SYNTHESIS OF 7-CHLORO -6-FLUORO-2-AMINO –BENZOTHIAZOLE (2)⁸ To glacial acetic acid (20 ml) cooled below room temperature were added 8 g (0.08 mol) of potassium thiocyanate and 1.45 g (0.01) of 3- chloro- 4-fluoro-aniline (1). The mixture was placed in freezing mixture of ice and salt and mechanically stirred. While, 1.6 ml of bromine in 6 ml of glacial acetic acid was added, from a dropping funnel at such a rate that the temperature never rose beyond 0°C. After all the bromine was added (105 min.), the solution was stirred for 3 hours below room temperature for 10 hours. It was then allowed to stand overnight, during which period an orange precipitate settled at the bottom. Water (6 ml) was added quickly and slurry was heated at 85°C on a steam bath and filtered hot. The orange residue was pleased in a reaction flask and treated with 10 ml of glacial acetic acid, heated again to 85°C and filtered. The combined filtrate was cooled and the pH was adjusted to 6 by using ammonia. The yellow precipitate was collected after filtration and recrystallized with benzene:ethanol (1:1) after treatment with charcoal which gave yellow plates of 7-chloro-6-fluoro-2-aminobenzothiazole (2). M.p 170°C; IR (KBr, cm⁻¹): 3425 (1° -NH), 1530 (aromatic C=C), 1632 (C=N), 1442 (thiazole), 1320 (C-N), 1195 (C-F), 716 (C-Cl); ¹H-NMR (DMSO-d₆, ppm): 6.8 (s, 2H, NH₂), 7.1-7.5 (m, 2H, Ar-H). ### SYNTHESIS OF 7-CHLORO-6-FLUORO-N-[(1E)-(4-SUBSTITUTED PHENYL) METHYLIDENE] 6-FLUORO-1, 3-BENZOTHIAZOL-2-AMINE (4a-g) 7-chloro-6-fluoro-2-aminobenzothiazole (2, 0.01 mol) and 4-substituted aromatic aldehyde (3a-h, 0.01mol) were dissolved in 50 ml absolute alcohol. To this solution a pinch of anhydrous zinc chloride was added. The reaction mixture was refluxed for 10-12 hours on a water bath. It was cooled and poured into crushed ice. The solid thus obtained was filtered & washed with water and recrystallized from ethanol. M.p 140-165°C; IR (KBr): 685 (C-Cl), 1193 (C-F), 1449 (C=C aromatic), 1257 (C-N), 1647 (C=N); ¹H-NMR (DMSO-d₆, ppm): 8.5-9.2 (1H, s, N=CH), 7.1-8.2 (6H, m, Ar-H). ## SYNTHESIS 3-(6, 7 SUBSTITUTED-1,3-BENZO THIAZOL-2-YL)-4-(4-SUBSTITUTED PHENYL)-1,3-THIAZOLIDIN-2-ONE (5a-g, 6 a-g, 7 a-g, 8 a-g, 9 a-g, 10 a-g) Schiff's bases (0.1 mol) were dissolved individually in 50 ml DMF in a 100 ml of round bottom flask fitted with a double surface reflux condenser. Thioglycolic acid (0.1 mol) was added carefully to it and the reaction contents were subjected to gentle reflux over water bath for 6 hrs. The reaction was continuously monitored for its completeness using TLC techniques. After 6 hrs the reaction contents were cool down, the resultant product was separated and subjected to re crystallization with alcohol. M.p 165-185°C; IR (KBr): 685 (C-Cl), 1193 (C-F), 1449 (C=C aromatic), 1257 (C-N), 1647 (C=N), 1744 (C=O), 782 (C-S); ¹H-NMR (DMSO-d₆,ppm) 8.5-9.2 (1H, s, N-CH), 7.1-8.2 (6H, m, Ar-H). Schematic representation of benzothiazole derivatives TABLE: I - PHYSICAL DATA OF BENZOTHIAZOLE DERIVATIVES $$R_1$$ R_2 R_3 | Compd | R_1 | R ₃ | R ₃ | M.pt | Yield | *R _f | MOLCULAR | |-------|-------|------------------|----------------|-----------|-------|-----------------|---| | • | | | | (^{0}C) | (%) | | FORMULAS | | 5a | F | Cl | Dimethyl amine | 180 | 54 | 0.52 | C ₁₈ H ₁₅ ClFN ₃ OS ₂ | | 5b | F | Cl | 4-chloro | 162 | 58 | 0.56 | $C_{16}H_9C_{12}FN_2OS_2$ | | 5c | F | Cl | 4-Hydrogen | 174 | 60 | 0.49 | C ₁₆ H ₁₀ ClFN ₂ OS ₂ | | 5d | F | Cl | 4-Hydroxy | 169 | 62 | 0.53 | C ₁₆ H ₁₀ ClFN ₂ O ₂ S ₂ | | 5e | F | Cl | 4-Nitro | 175 | 75 | 0.48 | C ₁₆ H ₉ ClFN ₃ O ₃ S ₂ | | 5f | F | Cl | 4-Methoxy | 173 | 56 | 0.43 | C ₁₇ H ₁₂ ClFN ₂ O ₂ S ₂ | | 5g | F | Cl | 2-Hydroxy | 152 | 53 | 0.49 | $C_{16}H_{10}ClFN_2O_2S_2$ | | 6a | Cl | Cl | Dimethyl amine | 178 | 53 | 0.45 | $C_{18}H_{15}Cl_2N_3OS_2$ | | 6b | Cl | Cl | 4-chloro | 163 | 57 | 0.51 | $C_{16}H_9Cl_3N_2OS_2$ | | 6c | Cl | Cl | 4-Hydrogen | 159 | 52 | 0.53 | $C_{16}H_{10}Cl_2N_2OS_2$ | | 6d | Cl | Cl | 4-Hydroxy | 168 | 48 | 0.43 | $C_{16}H_{10}Cl_2N_2O_2S_2$ | | 6e | Cl | Cl | 4-Nitro | 162 | 59 | 0.41 | $C_{16}H_9Cl_2N_3O_3S_2$ | | 6f | Cl | Cl | 4-Methoxy | 158 | 56 | 0.43 | $C_{17}H_{12}Cl_2N_2O_2S_2$ | | 6g | Cl | Cl | 2-Hydroxy | 153 | 52 | 0.53 | $C_{16}H_{10}Cl_2N_2O_2S_2$ | | 7a | Н | Cl | Dimethyl amine | 176 | 52 | 0.56 | $C_{18}H_{16}CIN_3OS_2$ | | 7b | Н | Cl | 4-chloro | 169 | 45 | 0.51 | $C_{16}H_{10}Cl_2N_2OS_2$ | | 7c | Н | Cl | 4-Hydrogen | 158 | 65 | 0.58 | $C_{16}H_{11}CIN_2OS_2$ | | 7d | Н | Cl | 4-Hydroxy | 162 | 56 | 0.32 | $C_{16}H_{11}CIN_2O_2S_2$ | | 7e | Н | Cl | 4-Nitro | 156 | 67 | 0.43 | $C_{16}H_{10}CIN_3O_3S_2$ | | 7f | Н | Cl | 4-Methoxy | 164 | 51 | 0.48 | $C_{17}H_{13}CIN_2O_2S_2$ | | 7g | Н | Cl | 2-Hydroxy | 151 | 54 | 0.62 | $C_{16}H_{11}CIN_2O_2S_2$ | | 8a | Н | Br | Dimethyl amine | 173 | 57 | 0.57 | $C_{18}H_{16}BrN_3OS_2$ | | 8b | Н | Br | 4-chloro | 169 | 50 | 0.46 | $C_{16}H_{10}BrClN_2OS_2$ | | 8c | Н | Br | 4-Hydrogen | 158 | 54 | 0.65 | $C_{16}H_{11}BrN_2OS_2$ | | 8d | Н | Br | 4-Hydroxy | 165 | 62 | 0.53 | $C_{16}H_{11}BrN_2O_2S_2$ | | 8e | Н | Br | 4-Nitro | 157 | 58 | 0.46 | $C_{16}H_{10}BrN_3O_3S_2$ | | 8f | Н | Br | 4-Methoxy | 154 | 63 | 0.38 | $C_{17}H_{13}BrN_2O_2S_2$ | | 8g | Н | Br | 2-Hydroxy | 150 | 64 | 0.58 | $C_{16}H_{11}BrN_2O_2S_2$ | | 9a | Н | CH ³ | Dimethyl amine | 176 | 56 | 0.48 | $C_{19}H_{19}N_3OS_2$ | | 9b | Н | CH ³ | 4-chloro | 171 | 57 | 0.68 | $C_{17}H_{13}CIN_2OS_2$ | | 9c | Н | CH ³ | 4-Hydrogen | 176 | 64 | 0.57 | $C_{17}H_{14}N_2OS_2$ | | 9d | Н | CH ³ | 4-Hydroxy | 154 | 60 | 0.62 | $C_{17}H_{14}N_2O_2S_2$ | | 9e | Н | CH ³ | 4-Nitro | 168 | 65 | 0.62 | $C_{17}H_{13}N_3O_3S_2$ | | 9f | Н | CH ³ | 4-Methoxy | 156 | 54 | 0.54 | $C_{18}H_{16}N_2O_2S_2$ | | 9g | Н | CH ³ | 2-OH | 154 | 54 | 0.46 | $C_{17}H_{14}N_2O_2S_2$ | | 10a | Н | OCH ³ | Dimethyl amine | 173 | 53 | 0.38 | $C_{19}H_{19}N_3O_2S_2$ | | 10b | Н | OCH ³ | 4-chloro | 167 | 59 | 0.35 | $C_{17}H_{13}CIN_2O_2S_2$ | | 10c | Н | OCH ³ | 4-Hydrogen | 173 | 57 | 0.65 | $C_{17}H_{14}N_2O_2S_2$ | | 10d | Н | OCH ³ | 4-Hydroxy | 158 | 60 | 0.54 | $C_{17}H_{14}N_2O_3S_2$ | | 10e | Н | OCH ³ | 4-Nitro | 156 | 50 | 0.47 | $C_{17}H_{13}N_3O_4S_2$ | | 10f | Н | OCH ³ | 4-Methoxy | 167 | 59 | 0.58 | $C_{18}H_{16}N_2O_3S_2$ | | 10g | Н | OCH ³ | 2-OH | 165 | 65 | 0.48 | $C_{17}H_{14}N_2O_3S_2$ | *Benzene (9): Ethanol (1) TABLE II ANTIBACTERIAL ACTIVITIES OF THE COMPOUNDS | | Antibacterial Activity (Zone of Inhibition in mm) | | | | | | | | |-----------------|---|---------------|----------|-----------------|--|--|--|--| | | E.coli | P. aeruginosa | S.aureus | B.substilis | | | | | | Compounds | Conc.100 | Conc. 100 | Conc.100 | Conc.100 mcg/ml | | | | | | | mcg/ml | mcg/ml | mcg/ml | | | | | | | 5a | 20 | 18 | 21 | 22 | | | | | | 5b | 18 | 17 | 18 | 20 | | | | | | 5c | 16 | 20 | 17 | 18 | | | | | | 5d | 18 | 19 | 20 | 16 | | | | | | 5e | 19 | 18 | 23 | 23 | | | | | | 5f | 22 | 20 | 18 | 20 | | | | | | 5g | 21 | 19 | 16 | 25 | | | | | | 6a | 23 | 21 | 22 | 24 | | | | | | 6b | 21 | 19 | 19 | 18 | | | | | | 6c | 22 | 20 | 22 | 22 | | | | | | 6d | 21 | 23 | 18 | 20 | | | | | | 6e | 18 | 23 | 21 | 19 | | | | | | 6f | 23 | 21 | 16 | 18 | | | | | | 6g | 20 | 17 | 24 | 17 | | | | | | 7a | 18 | 24 | 17 | 24 | | | | | | 7b | 21 | 25 | 21 | 24 | | | | | | 7c | 17 | 19 | 16 | 18 | | | | | | 7d | 22 | 23 | 21 | 17 | | | | | | 7e | 18 | 17 | 17 | 16 | | | | | | 7f | 21 | 23 | 21 | 19 | | | | | | 7g | 24 | 23 | 21 | 20 | | | | | | 8a | 20 | 22 | 21 | 23 | | | | | | 8b | 21 | 24 | 21 | 22 | | | | | | 8c | 17 | 18 | 17 | 19 | | | | | | 8d | 24 | 21 | 23 | 21 | | | | | | 8e | 20 | 19 | 18 | 23 | | | | | | 8f | 21 | 24 | 21 | 22 | | | | | | 8g | 18 | 19 | 20 | 23 | | | | | | 9a | 21 | 22 | 23 | 21 | | | | | | 9b | 22 | 21 | 24 | 26 | | | | | | 9c | 21 | 23 | 18 | 16 | | | | | | 9d | 19 | 15 | 18 | 19 | | | | | | 9e | 18 | 19 | 21 | 22 | | | | | | 9f | 22 | 26 | 21 | 24 | | | | | | 9g | 21 | 25 | 21 | 23 | | | | | | 10a | 19 | 18 | 16 | 15 | | | | | | 10b | 21 | 17 | 18 | 21 | | | | | | 10c | 21 | 24 | 22 | 21 | | | | | | 10d | 20 | 21 | 18 | 23 | | | | | | 10e | 22 | 20 | 19 | 22 | | | | | | 10f | 21 | 20 | 19 | 23 | | | | | | 10g | 21 | 22 | 23 | 26 | | | | | | Standard | 26 | 31 | 28 | 30 | | | | | | (ciprofloxacin) | | | | | | | | | ### RESULT AND DISCUSSION All synthesized compounds (5a-g, 6a-g, 7a-g, 8a-g, 9a-g, 10a-g) were characterized on the basis of IR-spectra and ¹H-NMR spectra. All synthesized compounds showed antibacterial activity against *E.coli, P. aeruginosa, S.aureus and B.substilis.* The synthesized compounds 5a, 5f, 5g, 6a, 6b, 6f, 6g, 7b, 7d, 7f, 7g, 8b, 8d, 8f, 9a, 9b, 9c, 9f, 9g, 10b, 10e, 10f &10g have shown good activity against *E. coli* and the synthesized compounds 6d, 6e, 6f, 7a, 7b, 7d, 7f, 7g, 8a, 8b, 8d, 8f, 9a, 9b, 9c, 9f, 9g, 10c,10d &10g showed good activity against *P. aeruginosa* and the synthesized compounds 5a, 5e, 6a, 6c, 6e, 6g, 7b, 7d, 7f, 7g, 8a, 8d, 8f, 9b, 10c & 10g showed good activity against *S. aureus*. Synthesized compounds 5a, 5c, 5g, 6a, 6c, 7a, 7b, 8a, 8b, 8d, 8e, 8f, 8g, 9b, 9f, 9g, 10d, 10f & 10g showed good activity against *B. substilis* when compared with standard drug ciprofloxacin. ### ACKNOWLEDGEMENT SAIF laboratory and university Institute of Pharmaceutical Sciences, Punjab University for IR and ¹H-NMR spectra. ### **REFERENCES** - 1. F.Russo, G.Romeo, N. A. Santagati, A. Caruso, V. cutuli, D. Amore, *Eur. J. Med. Chem.*,29 (1994), 569. - 2. Y.Katsura, Y.Indoue, S.Nishino, M.Tomoi, H. Takasugi, *Chem. Pharm .Bull* (Tokyo), 40 (1993), 1818. - 3. T.G. Kuchler, M. Swanson, v. Scherbuchin, H. Larsson, B.Mellgaard, J. E.Sjoestoren, *J. Med. Chem.*, 41 (1998), 1777. - 4. J. Trefouel, m.Trefouel, f. Nitti and D.Bovet, *Chem. Res. Soic. Bio.*, 120 (1935),2023. - 5. Nadeem Siddiqui and Mahfuz Alam, *Ind. J. of Het. Chem.*, 13 (2004) 361. - 6. D. Florence, A.Antonio, Carole Di Giorgio, maxime Robin, Erik De clercq, Pierre Timon-David, ean-Pierre Galy, *Eur. J. Med. Chem.* 39 (2004), 685. - 7. S.R. Pattan, Ch. Suresh, V. D. Pujar, Reddy V.V.K., V.P.Rasal and B.C. Koti, *Ind. J. of Chem.*, 44B (2005),213. - 8. K.P.Bhusari, P.B. KhedeKar, S.N. Umathe, R.H. Bahekar and A.Raghu Ram Rao, *Ind J. Heterocyclic Chem.* 9 (2000),213 - 9. V.N. Patelia, P.K. Patel and A.J.Baxi, *J. Indian Chem. Soc.*, 67 (1990),780. ****