

International Journal of ChemTech Research CODEN(USA): IJCRGG ISSN : 0974-4290 Vol. 3, No.1, pp 293-297, Jan-Mar 2011

Green Synthesis of Biologically Active Pyrazolopyrimidine Derivatives Using an Ionic liquid 2-Methyl-3-butylimidazolium chloride

A.Rajendran^{1*}, D.Raghupathy² and M.Priyadarshini¹

¹Department of Chemistry, Sir Theagaraya College,Chennai-600 021, Tamil Nadu, India. ²Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, South Korea

> *Corres. author: annamalai_rajendran 2000@ yahoo.com Tel: 944 3765051; Fax: 25983421

Abstract: Pyrazolopyrimidine derivatives have received a great deal of attention due to their pharmacological activities. Avoiding the use of organic solvents in synthesis is a paradigm shift directed at developing more benign chemistry, and with ionic liquids surprisingly can lead to access to new compounds. The application of ionic liquids in organic synthesis also provides chemical processes with special emphases such as enhanced reaction rates, absence of highly inflammable solvents, higher yields of pure products, better selectivity, reusability of the ionic liquid catalyst, rapid optimization of reactions in parallel and several eco-friendly advantages. An efficient and environmental benign method is reported for the synthesis of some Pyrazolopyrimidine derivatives using 3-methyl-1-phenyl-5-pyrazolone with carbonyl compounds in ionic liquid 2-methyl-3-butyl imidazolium chloride. It is noteworthy to mention that this method of synthesis requires less time, less temperature, better yield and less amount of by-products than conventional reactions. The recyclability and reusability of the catalyst have been tested. The structures of all the synthesized Pyrazolopyrimidine derivatives have been established on the basis of elemental and spectral analysis. The compounds have been screened for their antimicrobial activity against various micro-organisms. All the compounds showed moderate to good activity against different micro-organisms at $256\mu g/ml$.

Keywords: Green synthesis, ionic liquid, pyrazolopyrimidine derivatives, spectral analysis.

Introduction and Experimental

The derivatives of pyrazolone are important class of antipyretic and analgesic compounds¹. 1-Phenyl-3-methyl-4-arylmethylene-5-pyrazolones are very useful intermediates in the synthesis of substituted pyrazolones, generally, which were prepared by the condensation of 3-methyl-1-phenyl-5-pyrazolone with aromatic aldehydes². Pyrazolopyrimidine derivatives have received a great deal of attention due to their pharmacological activity³, such as allopurinol⁴, which is still the drug of choice for the treatment of hyperurecemia and gouty arthritis⁵. Pyrazolopyrimidine are purine analogues and as such

they have useful properties as antimetabolites in purine biochemical reaction⁶. Moreover, these compounds also display marked antitumor and antileukemic activity⁷. Pyrazolopyrimidine derivatives have demonstrated promising antimicrobial activity against Gram-positive bacteria⁸. Synthesis of such biologically important compounds assumes great importance. Recently, some new methods such as microwave irradiation⁹, supported solid catalyst¹⁰, solid state reactions etc.¹¹ have been applied to facilitate this reaction. However, some of these methods are limited due to slow reaction rate, low yields, side products, tedious workup, and the use of toxic solvents or

expensive catalysts ^{12, 13}.

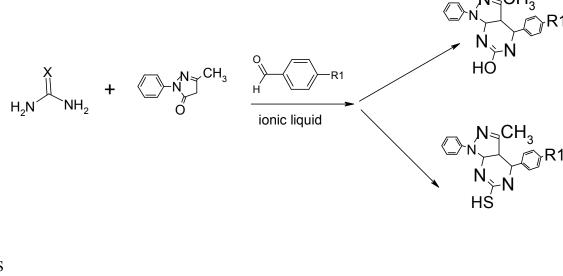
In recent years, the interest in room temperature ionic liquids is increasing as green reaction media for synthetic organic chemistry¹⁴. It is worth to note that Shingare et al. reported the Knoevenagel condensation reactions in ionic liquids ethyl ammonium nitrate of pyrazolone with few aromatic aldehydes gave moderate to high yields¹⁵. In continuation of our interest in using ionic liquids as a green reaction medium for the synthesis pyrazolone pyrimidine derivatives using 3-methyl-1-phenyl-5-pyrazolone with urea and various substituted aldehydes in the presence of 2-methyl-3-butyl imidazolium chloride as catalyst.

Materials and reagents

All the chemicals were of AR grade and used without further purification unless otherwise stated. All the aromatic aldehydes were obtained from S.D. fine chemicals, Mumbai. Ionic liquid was obtained from Aldrich chemicals, USA and used as received.

Analytical and spectral methods

Melting points of all the compounds were determined in open capillaries and are uncorrected. The homogeneity of compounds was checked by TLC on silica gel 'G' coated glass plates. IR spectra were recorded in KBr on Shimadzu FT-IR 8300 spectrometer and ¹H NMR spectra were recorded in Varian 400 MHZ and Bruker Advance II instruments in CDCl₃ by using TMS as internal standard. Mass spectra of the synthesized compounds have been recorded on a Jeol SX 102/DA-6000 spectrometer.


Synthesis of pyrazolone pyrimidine derivatives

3-methyl-1-phenyl-5-pyrazolone (0.01 moles), urea (0.01 moles) and various substituted aldehydes (0.01 moles) were added in 2-Methyl-3-butyl imidazolium chloride. The reaction mixture was refluxed for appropriate time; the reaction was monitored by thin liquid chromatography. Upon completion of the reaction the clear solution thus obtained was treated with crushed ice to give the solid product which was filtered and dried. The crude product was purified by recrystallization from absolute alcohol. The Ionic liquid in the reaction was recovered simply by drying in vacuum. The results were summarized in Table I.

Conventional method

The mixture of 3-methyl-1-phenyl-5-pyrazolone (0.01 moles), urea (0.01 moles) and various substituted aldehydes (0.01 moles) in ethanol was refluxed for 6 hours in water bath. The clear solution thus obtained was treated with crushed ice to give the solid product which was filtered and dried. The crude product was purified by recrystallization from absolute alcohol.

Scheme 1

1 2

3a-f(X=O) and 4a-f(X=S)

Tuble 11 Hesuits of the synthesis of several pyrazotone pyraniane activations using a ca									
Compound ^a	- R ₁	m.p.(°C)	Present me	ethod	Conventional method				
			Yield (%)	eld (%) Time (min)		Time (min)			
3a	-4-NO ₂	183	90 ^b	60	71	180			
3b	-4-NO ₂	183	92 ^c	60	71	180			
3c	-4-NO ₂	183	78 ^d	60	67	180			
3d	-4-NO ₂	183	75 ^e	60	70	180			
3e	-4-OMe	252	88	90	74	180			
3f	-4-Cl	154	93	90	69	180			
3g	-2-OH	166	89	75	67	180			
3h	-H	185	87	80	70	180			
3i	-4-F	124	86	85	65	180			

Table 1. Results of the synthesis of several pyrazolone pyrimidine derivatives using urea

^aall reaction were run with 3-methyl-1-phenyl-5-pyrazolone (0.01mole), carbonyl compound (0.01mole) and urea (0.01mole) in ethanol

^b second run use of 2-methyl -3- butyl imidazolium chloride

^c third run use of 2-methyl -3- butyl imidazolium chloride

^d reaction was run in THF

^e reaction was run in DMF

Table 2. Results of the synthesis of several pyrazolone pyrimidine derivatives using thiourea

Compound ^a	-R1	m.p.(°C)	Present met	hod	Conventional method		
			Yield (%)	Time(min)	Yield(%)	Time (min)	
4a	-4-NO ₂	224	90 ^b	60	74	180	
4b	-4-NO ₂	224	94 ^c	60	73	180	
4c	-4-NO ₂	224	80 ^d	60	69	180	
4d	-4-NO ₂	224	85 ^e	60	70	180	
4e	-4-OMe	285	88	90	77	180	
4f	-4-Cl	181	95	90	72	180	
4g	-2-OH	180	90	75	67	180	
4h	-H	186	87	80	70	180	
4i	-4-F	151	86	85	65	180	

^a all reaction were run with 3-methyl-1-phenyl-5-pyrazolone (0.01mole), carbonyl compound (0.01mole) and thiourea (0.01mole) in ethanol

^b second run use of 2-methyl -3- butyl imidazolium chloride

^c third run use of 2-methyl -3- butyl imidazolium chloride

^d reaction was run in THF

^e reaction was run in DMF

Table 3. Spectral and elemental analyses of a few representative products

Entry	Product	IR (KBr) cm ⁻¹	¹ H NMR (CDCl ₃) ppm	EIMS
				m/z
1	3e	3504,3421,3002,1635,1576.	δ9.07(1H,s),4.86(s,1H),3.70(s,3H),2.0-	594(M+)
			2.04(m,20H) 2.46(s,3H),6.85-8.70 (m,8H).	
2	3h	3506,3422,3005,1632,1572.	δ8.50(s,1H),4.87(s,1H),3.70-3.74(m,8H),2.14-	568(M+)
			2.35(m,8H),2.46 (s,3H),7.17-7.90 (m,9H).	
3	4e	2550, 3422, 3001, 1633, 1573.	δ9.12,1.19(s,1H),3.70(s,3H),3.37-3.78(m,8H)	614(M+)
			2.0-2.70(m,8H),3.82(s,3H),2.50(s,3H),6.73-	
			8.04 (m,8H).	
4	4h	2558,3425,3005,1637,1574,66	δ8.50(s,1H),1.25(m,1H),3.7274(m,8H),2.17-	584(M+)
		0.	2.32(m,8H), 2.35(s,3H),7.16-7.91(m,9H)	

Compound	Escherichia coli		Pseudomonas		Staphylococcus		Bacillus subtilis		C.albicanes	
			aeruginosa		aureus					
	128µg/	256	128µg	256	128µg	256	128µg	256	128µg	256
	mL	µg/mL	/mL	µg/mL	/mL	µg/mL	/mL	µg/mL	/mL	µg/mL
3a	-	++	-	++	-	++	-	++	-	-
3e	-	+++	-	+++	-	+++	-	+++	-	-
3f	-	+++	-	+++	-	+++	-	+++	-	-
3g	-	+++	-	+++	-	+++	-	+++	-	-
3h	-	++	-	++	-	++	-	++	-	-
3i	-	++	-	++	-	++	-	++	-	-

Table 4. Results of antibacterial activity of compounds 3a,e-i

(-) < 6mm, (+) = 7-10mm, (++) = 11-15mm, (+++) = 16-21mm, (++++) = 22-28mm

Table 5. Results of antibacterial activity of compounds 4a,e-i

Compound	Escherichia coli		Pseudomonas		Staphylococcus		Bacillus subtilis		C.albicanes	
			aeruginosa		aureus					
	128µg/	256	128µg	256	128µg	256	128µg	256	128µg	256
	mL	µg/mL	/mL	µg/mL	/mL	µg/mL	/mL	µg/mL	/mL	µg/mL
4a	-	++	-	++	-	++	-	++	-	-
4e	-	++	-	++	-	++	-	++	-	-
4f	-	+++	-	+++	-	+++	-	+++	-	-
4g	-	+++	-	+++	-	+++	-	+++	-	-
4h	-	++	-	++	-	++	-	++	-	-
4i	-	++	-	++	-	++	-	++	-	-

(-) < 6mm, (+) = 7-10mm, (++) = 11-15mm, (+++) = 16-21mm, (++++) = 22-28mm

Results and Discussion

The reaction was found to be general and applicable to aromatic aldehydes. All the tested aromatic aldehydes bearing various substituents such as chloro, nitro, methoxyl etc. could successfully react with 3-methyl-1-phenyl-5-pyrazolone within 90 minutes with high vields. The results are displayed in table 1.The examined ionic liquid 2-methyl-3-butyl imidazolium chloride was efficient and gave excellent results, which could truly be compared with classical molecular solvents with the advantage of rate acceleration and increase of yield. Interestingly we have not obtained the side products which were usually accompanied with the target compounds when the reaction was carried out in classic molecular solvents (3c, 3d). Moreover, the ionic liquid could be recovered and reused with no appreciable decrease in yields and reaction rates (compound 3a, 3b).

Antibacterial activity studies

Pyran and fused pyran derivatives have attracted a great deal of interest due to their association with various kids of biological properties. They have been reported for their antimicrobial ^{16,17,18,19}, antiviral^{20,21}, anticonvulsant²², cytotoxic²³, antigenotoxic²⁴ activities. The incorporation of another heterocyclic moiety in

pyrans either in the form of a substituent or as a fused component changes its properties and converts it into altogether new and important heterocyclic an derivative. Pyrazoles have attracted particular interest over the last few decades due to the use of such ring system as the core nucleus in various drugs. They are well known for their popular pharmacological activities. Considering the importance of pyrazolone derivatives, it was thought worthwhile to synthesize new compounds incorporating both these moieties. All the compounds synthesized in the present study were screened for their antibacterial activity against some bacteria (both gram-negative and gram- positive) namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis and C.albicanes by filter paper disc technique. The minimum inhibitory concentration (MIC) was ascertained by tube dilution method as per the standard procedures available in the literature. The results are presented in tables 4 and 5.It is understood from the screening data that compounds 3f-g and 4f-g showed highest degree of inhibition against bacteria namely Escherichia coli. Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis at 256 µg/mL While compounds 3a, h, i and 4a, h, i exhibited less inhibition activity against the aforementioned bacteria

at 256 μ g/mL No significant inhibition activity was noticed against any bacteria at concentration 128 μ g/mL It is interesting to note that no inhibition activity was observed with all the compounds synthesized in this study against the bacteria *C.albicanes* at both the concentration levels.

Conclusion

In conclusion, we have demonstrated the reaction between 3-methyl-1-phenyl-5-pyrazolone with aldehydes and urea/thiourea could be effectively performed in the ionic liquid 2-methyl-3-butyl imidazolium chloride. The present method has many obvious advantages over classical procedures, including being environmentally more benign, simple, the ease of product isolation, higher yield, shorter reaction times, and the potential for recycling ionic

References

- Windholz M. and Merck R., The Merck Index 10th ed., 1983,123.
- 2. Desimoni G., Astolfi M. and Cambieri A. Tetrahedron., 1973, 29, 2627-2634.
- 3. Villemin D. and Labiad B., Synth. Commun., 1990, 20, 3213-3220.
- 4. Traxler P., Bold G., Frie J., Lang M., Lydon N. and Mett H., J.Med. Chem., 1997, 40, 2217-2225.
- 5. Robins R.K., Revanker G.R., Springer R.H., Novinson T. and Albert A., J.Heterocycl Chem., 1985, 22, 601-610.
- 6. Satherland E.W., Robinson G.A. and Butcher R.W., Circulation., 1968, 37, 279-287.
- Earl A., Pugmire R.A., Revanker R.J. and Townsend G.R., J Org Chem., 1975, 40, 1822-1830.
- 8. Hildick B. G. and Shaw G., J Chem Soc., 1971, 1610.
- Donker G. I.O. and Duah A., J Heterocycl Chem., 1990, 27,765-772.
- Ali A., Tailor G., Ellsworth K., Harris G., Painter R., Silver L.L. and Young K., J Med Chem., 2003, 46, 1824.
- 11. Villemin D .and Labiad B., Synth. Commun., 1990, 20, 3213-3223.
- 12. Sun J., Yan C.G. and Han Y., Synth. Commun., 2001, 24, 616-622.
- Li X.L., Ma H., Wang Y.M. and Meng J.B., J. Chin.Univ., 1995,16, 1903-1910.

liquid and catalyst. The recyclability and reusability of the catalyst have been tested. The structures of all the synthesized Pyrazolopyrimidine derivatives have been established on the basis of elemental and spectral analysis. The compounds have been screened for their antimicrobial activity against various micro-organisms. All the compounds showed moderate to good activity against different micro-organisms at 256µg/ml.

Acknowledgements

The author AR gratefully acknowledges the funding support rendered by the University Grants Commission, New Delhi for the major research project [F.No 35-147/2008(SR)]. He thanks the principal and the management of Sir Theagaraya College, Chennai-21 for the constant encouragement given.

- 14. Welton T., Chem. Rev., 1999, 99, 2071-2080.
- 15. Hangarge R.V., Jarikote D. and Shingare V. Green. Chem., 2002, 4, 266-272.
- El-Agrody A.M., Abd Fl-Latif M.S., El-Hady N.D., Fakery A.H. and Bedair A.H., Molecule., 2001, 6,519.
- 17. Bedair A.H., El-Hady N.D., Abd Fl-Latif M.S., Fakery A.H. and El-Agrody A.M., II Farmaco., 2000, 55, 708-715.
- El-Agrody A.M., El-Hakim M.H., Abd Fl-Latif M.S., Fakery A.H. El-Sayed E.M. and El-Ghareab K.A., Acta Pharm., 2000, 50,111-117.
- 19. Eid F.A., Abd El-Wahab A.H.F., El-Hag Ali G.A.M. and Khafagy M.M. Acta Pharm., 2004, 54,13-20.
- Perez-Perez M., Balzarini J., Rozenski J., De Clercq E. and Herdewijn P., Bioorg Med Chem Lett., 1995, 5, 1115-1160.
- 21. Shamroukh A.H., Zaki F.M.E., Morsy E.M.H., Abdel-Motti F.M. and Abdel-Megeid F.M.E., Arch Pharm., 2007, 340, 236-243.
- 22. Aytemir M.D., Calis U. and Ozalp M., Arch Pharm., 2004, 337, 281-291.
- 23. Melliou E., Magiatis P., Mitaku S., Skaltsounis A.L., Pierre A., Atassi G. and Renard P., Bioorg Med Chem., 2001, 9, 715-723.
- Chabehoub F., Messaad M., Mansour H.B., Chekir-Ghedira L. Salem M., Eur J Med Chem., 2007, 42, 715-725.