

International Journal of ChemTech Research CODEN(USA): IJCRGG ISSN : 0974-4290 Vol.3, No.1, pp 131-135, Jan-Mar 2011

Development and Validation of Spectrophotometric and Colorimetric Method for the determination of Nitazoxanide in its Bulk and Pharmaceutical Dosage Form (Tablets)

Lopamudra Adhikari*, Sanjiv Sahu, Sarbeswar Jagdev

School of Pharmaceutical Sciences;Sikha'O'Anusandhan University;Kalinga Nagar;Ghatikia;Bhubaneswar-751003;Orissa,India

*Corres.author:lopamudraadhikari@gmail.com

Abstract: Two simple and sensitive spectroscopic methods in UV region and Visible region were developed for the estimation of Nitazoxanide in its pharmaceutical dosage forms. Method A is based on Nitazoxanide showing its absorption maxima at 238.3nm in acetonitrile and water(9:1). The method B is based on the reaction of Nitazoxanide with 1 ml, 1% ferric chloride and 2 ml, 0.1% MBTH to produce a greenish color ,characteristic light absorption at 732nm. These method obey Beer- Lambart law at a concentration range of 5-40mcg/ml and 50-250mcg/ml respectively. The % recoveries were found out to be 98.75 - 100.45. The results obtained with the proposed methods are in good agreement with the labeled amounts when tablet dosage forms were analysed. **Keywords:** Nitazoxanide, MBTH, Spectroscopy, Method Development.

INTRODUCTION

Nitazoxanide is chemically N-(5-nitrothiazoly) salicilamide acetate which is a new antiprotozoal drug used in the treatment of c ryprtosporidiosis in immunecomprised patients including those with AIDS or HIV infectuion¹. It is used in helminth infections. The anti-protozoal activity of nitazoxanide is believed to be due to interference with the pyruvate:ferredoxin oxidoreductase (PFOR) enzyme dependent electron transfer reaction which is essential to anaerobic energy metabolism.It has also been shown to have activity against influenza A virus. The mechanism appears to be by selectively blocking the maturation of the viral hemagglutinin at a stage preceding resistance to endoglycosidase H digestion. This impairs

hemagglutinin intracellular trafficking and insertion of the protein into the host plasma membrane ²⁻⁴ Though not official in any pharmacopoeia, sufficient literature has not been found for its gualitative and guantitative estimation.A survey of literature reveals that very few method & solvents were available for the estimation of Nitazoxanide, but suffer from one disadvantage to the other, such as low sensitivity, lack of selectivity & simplicity. Hence it is proposed to improve the existing methods and to develop accurate, precise sensitive assay Nitazoxanide, results for the of in pharmaceutical dosage forms adopting different available analytical solvent and different techniques like UV-visible spectrophotometry.

MATERILS AND METHODS

Materials

Pure nitazoxanide, used, was gifted by Alembic Pharmaceutical, Borada, Gujurat, India. Solvents such as methanol, acetonitrile were of AR grade (Merck) used. Aqueous solutions of MBTH(0.1%)and ferric chloride(1%w/v) was freshly prepared. Tablets of Natezox were available in the local market. The spectrophotometric observation was made with JASCO V-630 spectrophotometer with 1cm matched quartzed cell.

Preparation of sample solution

Standard stock solution of nitazoxanide was prepared by dissolving 25 mg of drug in 25 ml of Acetonitrile : water (9 : 1) in volumetric flask to get a concentration of 1000μ gm/ml for method A and for method B in methanol and water.

Preparation of calibration curve

The prepared stock solution was further diluted with Acetonitrile : water (9 : 1) to get a concentration of 100 μ gm/ml. Different aliquots of drug solution were transferred separately in to a series of 10 ml volumetric flask and diluted to 10 ml with the solvent. Then the absorbances were measured at λ max 238.3nm against blank.

In method B **20**mg of drug (nitazoxanide) taken and dissolved in 6 ml of methanol and

2ml 4N HCl .0.24 gm of zinc dust was mixed slowly for reduction,kept for one hour for completion of reaction then filtered with whatmann filterpaper and finally the volume was made upto 20ml with methanol. Different concentration of drug solution previously reagent mixed, i.e. 1ml ferric chloride (1%) and 2 ml MBTH (0.1%) were transferred separately in to a series of volumetric flasks. Then the absorbencies were measured at λ max 732nm against reagent blank. ⁵⁻⁶.The reaction is depicted in figure-1. The observations of Nitazoxanide concentrations and absorbances is shown in Table:1.

ASSAY RESULTS

For analysis of commercial formulation, 20 tablets containing nitazoxanide of each marketed formulation taken and powdered. The powder equivalent to 10 mg nitazoxanide was taken and dissolved in 10 ml of Acetonitrile : water (9 : 1), sonicated and filtered. Suitable aliquots from the filtrate were taken further diluted with the same solvent to get the concentrations within the linearity range of standard curve. The absorbances of the prepared solutions were measured at 238.3 nm against a blank method A and for method B the powder equivalent to 10 mg nitazoxanide taken and dissolve in methanol, sonicated and filtered. Suitable aliquots from the filtrate were taken further diluted with the water to get the concentrations within the linearity range of standard curve. Then to each dilution 1ml ferric chloride (1%) and 2 ml MBTH (0.1%) were mixed, so that greenish colour developed. The absorbances of the prepared solutions were measured at 732 nm against a blank. The results are given in Table:2.

METHOD A			METHOD B	
Concentration	of	Absorbance	Concentration	Absorbance at 238.3nm
nitazoxanide		238.3nm	of nitazoxanide	Wavelength
in µgm/ml		Wavelength	in µgm/ml	
5		.1458	50	.027
10		.3179	70	.074
12		.3731	90	.1058
15		.5061	100	.1194
20		.6262	150	.2144
25		.8025	200	.3135
30		.9415	250	.4044
35		1.1238		
40		1.2895		

Table: 1 PLOTTING OF CALIBRATION CURVE

		Me	thod A	Method B		
Brand Name of the Tablet	Labeled amount of drug(mg)	Amount (mg) Found by the proposed method (n=3)	% Mean (±S.D.) Labeled amount (n=3)	Amount (mg) Found by the proposed method (n=3)	% Mean (±S.D.) Labeled amount (n=3)	
Natezox	500	502.9	100.53 ± 0.19	498.58	99.71 ± 0.27	
Nitazet	500	501.02	100.21±0.12	498.3	99.27±0.19	

Table:2 ASSAY RESULTS OF THE FORMULATION

VALIDATION

Precision:-

To determine the precision 7 days measurement (intra-days and interday) were computed with coefficient of variation (C.V. %) for replicate samples (n = 5) using concentration 10, 20, 40μ g/ml for method A and 100, 150, 200, 250μ g/ml for method B.

Both the intra-day and interday samples were calibrated with standard curve concurrently prepared

in the same day of analysis. The observations are given in Table:3.

Accuracy:-

To determine the accuracy of the proposed method, recovery studies were carried out by adding different amount (80%, 100%. 120%) of bulk sample of nitazoxanide within the linearity range and added to the pre-analyzed formulation 10μ gm/ml. from that percent recovery values were calculated. The observations are given in Table:4.

Table: 3 PRECISION OF THE PROPOSED FOR METHOD A and METHOD B

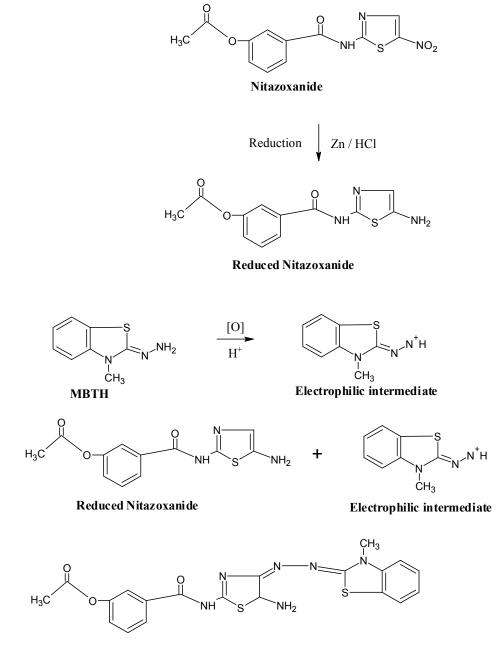
	METHOD-B								
ConcentraObserved concentration oftion ofNitazoxanide(µg/ml)					Concent ration of	Observed concentration of Nitazoxanide(µg/ml)			
Nitazoxani	Intra	day	Inter day		Nitazox	Intra day		Inter day	
de (µg/ml)	Mean	COV	Mean	COV	anide	Mean	CO	Mean	COV
	(n=3)	(%)	(n=3)	(%)	(µg/ml)	(n=3)	V	(n=3)	(%)
							(%)		
10	10.08	1.13	10.07	0.41	100	98.63	1.45	97.89	1.80
20	20.36	0.47	20.45	0.105	150	148.36	1.4	148.04	0.43
40	40.71	0.101	40.94	0.38	200	198.05	0.87	198.05	0.74
					250	250.1	0.36	240.94	0.38

Table:4 RECOVERY STUDIES FOLLOWING METHOD A

Sample ID	Concentration (µgm/ml)		Theoretical Content	% recovery of pure drug		Statistical analysis		
	Pure	Formulation	(µgm/ml)	Method	Method		Method	Method
	drug			Α	B		Α	В
S1:80%	8	10	9	99.16	98.75	Mean	99.33	99.60
S2:80%	8	10	9	98.33	99.60	SD	0.894	0.694
S3:80%	8	10	9	100.5	100.45	%RSD	0.90	0.696
S1:100%	10	10	10	99.8	99.5	Mean	99.53	99.77
S2:100%	10	10	10	99.35	99.79	SD	0.192	0.212
S3:100%	10	10	10	99.45	100.02	%RSD	0.19	0.213
S1 : 120%	12	10	11	99.63	100.14	Mean	100.07	99.85
S2:120%	12	10	11	100.13	99.84	SD	0.337	0.246
S3 : 120%	12	10	11	100.45	99.54	%RSD	0.336	0.245

Linearity

To establish the range of linearity between drug concentration and detector response and the drug concentrations of $5-40\mu g/mL$ for method A and 50, 70, 90, 100, 150, 200 & $250\mu g/mL$ for method B were used. Five replicates of analyte were measured.


Specificity and Selectivity

The analyte should have no interference from other extraneous components and be well resolved

from them. The specificity of the method was evaluated with regard to interference due to presence of any other excipients.

Limit of detection and quantitation

The limits of detection and quantitation, LOD and LOQ, were calculated by use of the equations $LOD = 3.3\sigma/S$ and $LOQ = 10\sigma/S$, where σ is the standard deviation of the blank and *S* is the slope of the calibration plot.

MBTH – Reduced Nitazoxanide product

Figure-1: reaction of Nitazoxanide (reduction) with MBTH

Parameters	Results
$\lambda \max(nm)$	732
Molar extinction coefficient	359.062×10^3
Beer's law (µg/mL)	50-250
Sandell's sensitivity ($\mu g/cm^2/0.001$)	87.03×10 ⁻²
Limit of detection (LOD)	0.1147
Limit of quantitation (LOQ)	0.3824
Regression equation: $y = a + bx$	
Intercept (a)	0.0019
Slope (b)	0.0706
Correlation coefficient	0.9992
N	3

Table: 5

RESULT AND DISCUSSION

The method approached gives novelty to the development procedure. Presence of nitro group in the sample structure enables for reduction in the primary stage of reaction and then further reaction proceeds with MBTH. The optical characteristics show results which obeys Beer-Lambert limit and is summarized in Table:1.The precision value i.e, the interday and intradav standard deviation results were found to be within the limit and is summarized in Table: 3 .The % recovery of pure drug are found to be within the limit and standard deviation is 0.694 calculated from Statistical analysis which has been summarized in Table ·4 The quantitative parameters for determination of Nitazoxanide in pharmaceutical dosage form are given in Table:5.

REFERENCES

- 1. Vanessa R. Anderson and Monique P. Curram; Nitazoxanide A Review of its Use in the Treatment of Gastrointestinal Infections; Drugs 2007; 67 (13).
- Rossignol JF, La Frazia S, Chiappa L, Ciucci A, Santoro MG. Thiazolides, a new class of antiinfluenza molecules targeting viral hemagglutinin at the post-translational level. J Biol Chem. 23284(43):29798-29808.

CONCLUSION

A new UV and a new colorimetric method has been developed for simultaneous analysis of Nitazoxanide and its tablet formulation. It has been shown above that the method is cost effective and less time consuming, accurate, reproducible, repeatable, linear, precise and selective, proving the reliability of the method. The scan results were very clear and obey Beer's law to a certain extend, which enables rapid quantitation of many samples in routine quality control. A minimal interference was observed from excipient. These results show the method could find practical application as a quality control tool for analysis of Nitazoxanide from their different pharmaceutical dosage forms in a quality control laboratory.

- 3. O'Neil,M.J.,In;The Merck Index,13th Edn., Merck &Co.,Inc.,Whitahouse Station,NJ,2001,6596.
- 4. Sweetman SC. Martindale, The complete Drug reference, Edited by pharmaceutical press, London, 2002; 3rd edition, page no- 598-599.
- 5. Kapse G K, Prabhakar G, Raju S, Appala (2006) Spectrophotometric methods for the estimation of nitazoxanide in pharmaceutical formulations. IJPS 68:403.
- 6. Journal of Chromatographic Science, Volume 47, Number 9, October 2009, pp. 745-748(4).