

International Journal of ChemTech Research CODEN(USA): IJCRGG ISSN: 0974-4290 Vol.2, No.4, pp 2070-2075, Oct-Dec 2010

Synthesis, Characterization and Chelating Properties of 2-methyl benzimidazole-Salicylic acid combined molecule

Kamlesh V. Patel and Arun Singh*

Department of chemistry, Govt. Geetanjali P.G. Girls College, Bhopal. (India)

*Corres.author: Kammo31@yahoo.co.in

Abstract: Aminomethylation (i.e. Mannich reaction) of 2-methyl benzimidazole was carried out by treating benzimidalzole with formaldehyde and 4-aminosalicylic acid. The resultant compound was designated as 1-(4-carboxy-3-hydroxyphenyl aminomethyl) 2-methyl benzimidazole (BI-SA). The transition metal complexes of Cu²⁺, Co²⁺, Ni²⁺, Mn²⁺, Zn²⁺ and Fe³⁺ of BI-SA have been prepared and characterized by elemental analyses, spectral studies, magnetic moment determination, molar conductivity measurement and microbicidal activity.

Keywords: 2-methyl benzimidazole, 4-aminosalicylic acid, metal chelates, spectral studies, magnetic moment, antibacterial and antifungal activity.

Introduction

2-methyl benzimidazoles belonging to the fused heterocyclic system prepared from amino acids are associated with diverse pharmaceutical activities such as antibacterial¹, insecticidal², fungicidal³, antimicrobial⁴, asvitronectial receptes, antagonist⁵, anthelmintic ⁶⁻⁸, anti-inflamonatary⁹, etc. Recently the 2-methyl benzimidazole derivative has been reported with remarkable antimicrobial activity¹⁰. The Mannich

reaction of lbenzimidazole derivative with 4-aminosalicylic acid an anti T.B agent has been reported recently by us.[] Thus this may afford good chelating ligand with better microbicidal activity. Hence in

continuation of this work[] the present communication comprises the complexation studies of 2-methyl benzimidazole-salicylic acid combined molecule. The research work is illustrated in scheme-I.

Experimental Materials

2-methyl benzimidazole was prepared by method reported in literature¹¹. p-Amino salicylic acid (PAS) (i.e. 4-Aminosalicylic acid) was obtained from local dealer. All other chemicals used were of analytical grade.

$$\begin{array}{c|c} & H_2 & H \\ \hline & N & C & N \\ \hline & CH_3 & OH \\ \end{array}$$

1-(4-carboxy-3-hydroxy phenylaminomethylene)-2-methyl benzimidazole (BI-SA)

BI-SA Metal Chelates Where Mt: Cu^{2+} , NI^{2+} , Zn^{2+} , Mn^{2+} , Co^{+2} , Fe^{3+}

Scheme-1

Synthesis of 1-(4-carboxy 3-hydroxy phenyl aminomethyl)- 2-methyl benzimidazole. Formation BI-SA

A mixture of 2-methyl benzimidazole (BI) (0.02 mole), formaldehyde (0.02 mole) and 4-aminosalicylic acid (PAS) (0.02 mole) in ethanol (70 m2l) was heated

under reflux for 4h. Subsequently ethanol was distilled off and the lump mass obtained. It was triturated with petroleum ether (40-60° C). The solid designated as BI-SA was isolated and dried in air. Yield was 68%. It's m.p. was 178-80° C (uncorrected).

Elemental Analysis: C₁₆H₁₅O₃N₃ (297)

		C%	Н%	N%
Calculated	1:	64.64	5.05	14.14
Found	:	64.62	5.02	14.13

Acid Value

Theoretical: 197.6 mg KOH/1g. Sample.

Found: 194 KOH/1g Sample.

IR Features

1480-1520 cm⁻¹. 2-methyl benzimidazole 3030, 1500, 1600 cm⁻¹ Aromatic. 1680 cm⁻¹ CO of COOH 3200-3600 cm⁻¹ OH 3400 cm⁻¹ Sec.NH 2850, 2920,1450cm⁻¹ CH₂ 2950,1370cm⁻¹ CH₃

NMR	δ ppm

(DMSO)	7.2 - 7.6 (8H)	Multiplet	Aromatic
	2.56 (2H)	Singlet	CH_2
	10.1 (1H)	Singlet	(COOH)
	3.9 (1H)	Singlet	(OH)
	2.8 (1H)	Singlet	(NH)

Synthesis of metal chelates of BI-SA

The Cu²⁺,Co²⁺, Ni²⁺, Mn²⁺, Zn²⁺,and Fe³⁺ metal ion chelates of BI-SA have been prepared in a similar manner. The procedure is as follow.

To a solution of BI-SA (31.3 g 0.1 mole) in ethanol-acetone (1:1v/v) mixture (150 ml), 0.1N KOH solution was added dropwise with stirring. The pasty precipitates were obtained at neutral pH. These were dissolved by addition of water up to clear solution. It was diluted to 250 ml. by water and was known as stock

solution. 25 ml of the stock solution (which contains 0.01 mole BI-SA) was added drop wise to the solution of metal salt (0.005 mole for divalent metal ions and 0.0033 mole for Fe³⁺ ion) in water at room temperature. Sodium acetate or ammonia was added up to complete precipitation. The precipitates were digested on water bath at 80° C for 2h. The digested precipitates of chelates were filtered washed with water and air dried. It was amorphous powder. Yield was almost quantitative. The detail are given in Table-1.

Table-1. Analytical Data of the Metal Chelates of HL₁ (i.e. BI-SA)

Compound	Empirical	Mol.	Yield	Elemental Analysis							
	Formula	Cal.	(%)	С%		H% N		N%		M%	
		Gm/mol		Cald	Found	Cald Fo	und Ca	ıld Fo	und Cal	d Fou	nd
HL (BI-SA)	$C_{16}H_{15}O_3N_3$	297	68	64.64	64.62	5.05	5.02	14.1	14.13		
$(L)_2 Cu^{2+}$	$C_{32}H_{28}N_6O_6 Cu^{2+} 2H_2O$	655.54	56	58.57	58.56	4.27	4.25	12.8	12.7	9.69	9.68
$(L)_2 Co^{2+}$	$C_{32}H_{28}N_6O_6Co^{2+}2H_2O$	650.94	57	59.03	59.02	4.30	4.29	12.9	12.8	9.05	9.04
$(L)_2 Ni^{2+}$	$C_{32}H_{28}N_6O_6Ni^{2+}2H_2O$	654.71	49	59.01	58.98	4.30	4.28	12.9	12.7	9.02	9.01
$(L)_2 \operatorname{Mn}^{2+}$	$C_{32}H_{28}N_6O_6Mn^{2+}2H_2O$	657.38	59	58.41	58.40	4.25	4.24	12.7	12.8	9.94	9.92
$(L)_2 Zn^{2+}$	$C_{32}H_{28}N_6O_6Zn^{2+}2H_2O$	646.94	58	59.35	59.34	4.32	4.30	12.9	12.7	8.49	8.47
$(L)_2 \text{ Fe}^{3+}$	$C_{48}H_{42}N_9O_9 Fe^{3+} 3H_2O$	943.85	54	61.02	61.01	4.44	4.43	13.3	13.2	5.91	5.89

Table -2 Magnetic Momen	t and Reflectance Spe	ctral data of Metal	Chelates of BI – S	A ligand

Metal	Magnetic Moment	Molar	Absorption	Transitions
chelate	$\mu_{\rm eff}$ (B.M.)	Conductivity Ωm ohm ⁻¹ cm ² mol ⁻¹	band (cm ⁻¹)	
Cu-HL	1.95	37.4	22688	C.T
			15862	$^{2}T\rightarrow^{2}T_{2}g$
Ni-HL	3.86	36.2	14692	$3 \text{ A2g} \rightarrow 3\text{T}_1\text{g}(p)$
			22985	$3 \text{ A1g} \rightarrow 3\text{T}_1\text{g}(\text{F})$
Co-HL	4.53	35.5	15375	$4 \text{ T1g(F)} \rightarrow 4\text{T}_2\text{g(F)}$
			22714	$4 \text{ T1g(F)} \rightarrow 3\text{A2g}$
Mn-HL	5.12	37.8	15375	$6 \text{ A1g} \rightarrow 4\text{T}_1\text{g}(4\text{Eg})$
			17648	$6 \text{ A1g} \rightarrow 4\text{T2g}(4\text{G})$
			22962	$6 \text{ A1g} \rightarrow 4\text{T}_1\text{g}(4\text{G})$
Fe-HL	5.87	39.2	19014	$6 \text{ A1} \rightarrow 4\text{T}_2\text{g}(4\text{G})$
			23004	$6 \text{ A1g} \rightarrow 4\text{T}_1\text{g}(4\text{G})$

Zn²⁺ Diamagnetic in Nature.s

Measurements

The elemental analysis for C, H and N were carried out on elemental analyzer TF-EA.1101 (Italy). IR spectra of BI-SA and its metal complexes were scanned on a Nicolet 760 FTIR spectrophotometer in KBr. The NMR spectrum of BI-SA was scanned on Brucker NMR spectrophotometer using DMSO solvent. The metal content of the metal chelate were performed by decomposing a weighed amount of each metal complexes followed by EDTA titration as reported in literature ¹². Magnetic susceptibility measurement of all the metal complex was carried out at room temperature by the Gouy mehod. Mercury tetrathiocynatocobalate (II) Hg [Co (NCS) 4] was used as a calibrant. The diffused reflectance spectra of solid metal complex were recorded on a Backman DK Spectrophotometer with a sodid reflectance attachment, MgO was employed as the reflectance compound. The electrical conductivity of all the complexes was measure in acetonitrile at 10⁻³ M concentration. All these analysis are given in Table-2.

Antifungal activity

The fungicidal activity of all the compounds was studied at 1000 ppm concentration in vitro plant pathogenic organisms listed in Table-3. The antifungal activities of all the samples were measured by cup plate method ¹³. Each of the plant pathogenic strains on potato dextrose agar (PDA) medium. Such a PDA medium contained potato 200 gms, dextrose 20gms, agar 20gms and water 1 litre. 5 days old cultures were employed. The compounds to be tested were suspended (1000ppm) in a PDA medium and autoclaved at 120° C for 15 min. at 15 atm pressure. These medium were poured into sterile Petri plate and the organisms were inoculated after cooling the Petri plate. The percentage inhabitation for fungi was calculated after 5 days using the formula given below.

Percentage of inhibition = $\frac{100 \text{ (X-Y)}}{\text{X}}$

Where, X: Area of colony in control plate

Y: Area of colony in test plate

The fungicidal activity all compound are shown in Table-3

Sample	Zone of inhibition of fungus at 1000ppm (%)						
	PE	BT	N	T	RN	AN	TL
(HL1)-Mn ²⁺	65	72	71	72	71	72	71
(HL1)-Co ²⁺	74	73	74	76	74	76	72
(HL1)-Ni ²⁺	71	78	76	80	75	77	75
(HL1)-Cu ²⁺	74	79	78	83	76	74	77
(HL1)-Fe ³⁺	72	72	75	77	79	76	76
$(HL1)-Zn^{2+}$	69	78	72	78	72	71	72
(HL1)-UO ²⁺	66	69	75	73	73	73	66
HL1	62	62	63	65	66	61	61

Table 3. Antifungal Activity of Ligand HL₁ and its metal chelates.

PE= Penicillium expansum; B8T= Botrydepladia thiobromine;

N=Nigrospra sp.; T= Trichothesium sp.; RN= Rhizopus nigricans;

AN= Aspergillus niger.; TL= Trichoderna lignorum

Results and Discussion

The parent ligand BI-SA was an amorphous brown powder, soluble in various solvents like dioxane, DMSO and DMF. The results of elemental analysis of the ligand are reported in experimental part. They are consistent with the predicted structure as shown in Scheme-I.

Examination of IR spectrum (not shown) of BI-SA reveals that broad band of phenolic hydroxyl stretching is observed at 3200-3600 cm⁻¹ as well as additional absorption bands at 3030, 1500 and 1600 are characteristics of the salicylic acid ^{10,11}. The strong bands at 1680 for C=O and band at 3400 for sec. NH. The NMR data (shown in experimental part) also confirm the structure of BI-SA.

The Metal chelate of BI-SA with ions $Cu^{2+}, Co^{2+}, Ni^{2+}, Mn^{2+}, Zn^{2+}, Fe^{3+}$ vary in colours. On the basis of the proposed structure as shown in Scheme-1, the molecular formula of the BI-SA ligand is C_{15} H_{13} O_3 N_3 . Which upon complexion coordinates with one central metal atom at four coordination sites and with two water molecules. Therefore the general molecular formula of the resulting metal chelate is $[C_{15}$ H_{12} O_3 $N_3]_2$ $M.2H_2O$ for divalent metal ions. This has been confirmed by results of elemental analysis reported in Table-1. The data are in agreement with the calculated values.

Inspection of the IR Spectra (not shown) of metal chelates reveals that all the spectra are identical in all respects. The comparison of IR spectrum of the parent ligand BI-SA with that of its each metal chelates has revealed certain characteristics differences.

One of the significant differences to be expected between the IR spectrum of the parent ligand and its metal chelates is the presence of more broadened bands in the region of 3200-3600 cm⁻¹ for the metal chelates as the oxygen of the O-H group of the ligands forms a coordination bond with the metal ions ¹³⁻¹⁵. This is explained by the fact that water molecule might have strongly absorbed to the metal chelates samples during their formation. Another noticeable difference is that the bands due to the COO⁻ anion at 1600 cm⁻¹ in the IR spectrum of the each metal chelates. The band at 1400 cm⁻¹ in the IR Spectrum of HL assigned to inplane OH determination¹³⁻¹⁵ is shifted towards higher frequency in the spectra of confirmed by a week bands at 1105 cm⁻¹ corresponding to C-O-M starching ¹³⁻¹⁵. Thus all of these characteristics features of the IR studies suggested the structure of the metal chelates as shown in scheme.

Examination of data of the metal content in each compound revealed a 1:2 metal: ligand (M: L) stoichiometry in all of the chelate of divalent metal ions and 1:3 metal: ligand stoichiometry for Fe³⁺.

Magnetic moment (μ_{eff}) of each of the metal chelates is given in Table-2. Examination of these data reveals that all chelates other than that of Zn^{2+} , are Para magnetic while those of Zn^{2+} are diamagnetic.

The diffuse electronic spectrum of the [Cu HL $(H_2O)_2$] metal complex shows broad bands at 15860 and 22685 cm⁻¹ due to the ${}^2T\rightarrow{}^2T_2g$ transition and charge transfer, respectively suggesting a distorted octahedral structure ${}^{16-18}$ for the [Cu HL $(H_2O)_2$] complex. Which is further confirmed by the higher value of μ_{eff} of the [Cu HL $(H_2O)_2$] complex. The [Ni HL $(H_2O)_2$] and [Cu HL $(H_2O)_2$] complex gave two absorption bands respectively at 15601, 22983, and 15375, 22715, cm⁻¹ corresponding to ${}^4T_1g\rightarrow{}^2T_1g$ and 4T_1g (p) transitions. Thus absorption bands at the diffuse, reflectance spectra and the value of the magnetic moments μ_{eff} indicate and octahedral configuration for the [NiHL $(H_2O)_2$] and

[Cu HL (H₂O)₂] complex. The spectra of [Mn HL (H₂O) ₂] shows weak bands at 15374, 17649, and 22960 cm⁻¹ assigned to the transitions ${}^{6}A_{1g} \rightarrow {}^{4}T_{1g}$ (4G), ${}^{6}A_{1g} \rightarrow {}^{4}T_{2g}$ (4G) and ${}^{6}A_{1g}(F) \rightarrow {}^{4}T_{1g}$, respectively suggesting an octahedral structure for the [Mn HL $(H_2O)_2$] chelate. The spectrum of Fe³⁺ complex has not been adequately characterized. The spectrum comprised the band ground 19012cm⁻¹ and other weak band ground 23001 cm⁻¹. The latter has not very long tail. These may have the transition ${}^{6}A_{1g} \rightarrow {}^{4}T_{2g}$ (4G) and ${}^{6}A_{1} \rightarrow {}^{4}T_{1}$ (4G). The high intensities of the bands suggests that they might be charge transfer in origin μ_{eff} is found to be lower than normal range. In the absence of low temperature moments it is difficult to give any significance. As the spectrum of the [Zn HL (H₂O) ₂] polymer is not well resolved, it is not interpreted but it is μ_{eff} value shows that it is diamagnetic as expected.

Conductivities of all the complexes were measured in acetonitrile solvent and all the complexes

were found to be electrolytic ¹⁹ in nature of 1:2 type and molar conductivity values are in the range of 25.3-39.1 Ohm⁻¹ Cm⁻¹.

The antifungal activity of all the compounds measured for various plant pathogens. Inspection of the result shown in Table-3 indicates that all compounds are good toxic for fungi. Out of all the compounds copper chelates is more toxic than other. These compounds almost inhibit the fungi ssssssabout 70%. Hence produced metal chelates can be employed as garden fungicides. Further work in the direction is in progress.

Acknowledgment: The author thanks to Dr. (Mrs.) Nayantara Pathak Principal, Govt. Geetanjali P.G. Collage, Bhopal for providing necessary research facilities. The author also thanks to Dr. M.V.Hathi Science collage, Palanpur, Gujarat for permission of extension of his work.

References:

- 1. Kiyoshi O.,Japan kokai 10,024 chem abst.1978,88, 1978 3318g.
- 2.Werner D., Walfgang B., Ingebarg H., Hans S. and Willum B. Ger often. 2612315, chem. Abs. 1978, 88, 79698.
- 3. Hans W., Gnenter D. and Paul H, Ger. (East) 127636. Chem Abs. 88, 136680 w.
- 4. Pegfei. X.,Ximping Y.,Shaozn W. and Ziyl Z, Ind J. Chem,1998,3713,127.
- 5.Neustadt B.R. and Smith E.M PCT. Int. Appl. W00032578, Chem Abs., 2003, 133, 309589.
- 6 Puratchikody A., Sivagothi V., Zaswanth A., Rutkmani K. and Nallu M., Ind. J. Heterocyclic chem II. 2001 241.
- 7. Pandey V.K. and Raj N., Curr. Sci. 1980 53, 256.
- 8. Sengupta A.K., Gupta A.A. and Chandra V. Indian Drug. 1985 18, 233.
- 9. Evans D,Hicks T.A.,Willamsan W.R.N.and Aavidsian W., SCR Meacock and Kitchen E.A Chem. Abot., 1986 125, 2476894.

- 10. Bhatt A.K., Shah P.K., Karadia H.G. and Patel H.D., Orient. J. Chem 2003 19, 643
- 11. Vogel A.I., Textbook of Quantitative Chemical Analysis, 1996 ELBS 5th Edn. London.
- 12.Baily W.R. and Scott E.G., Diagnostic Microbiology, The C. V. Moshy Co. St. Lovis 1966, 257.
- 13. Silverstein R.M., Spectrometric Identification of organic compounds, 1991 5th Ed. John wiley,.
- 14.Kemp W., Organic Spectroscopy, 1998.ELBS. (Macmillan' UK),.
- 15.Nakamoto K., Infared Spectra of Inorganic and Co-Ordination Compound, 1970 Wiley NY.
- 16.Lever A B P, Inorganic Electronic Spectroscopy, 1968 Elseviv, NY,.
- 17. Figgis B.N., Introduction to Ligands Field, 1976 Wiley Estern Ltd. NY..
- 18. Carlin R.N. and Van Dryneveldt A J, Magnetic properties of Transition Metal Compound 1997 Springe-Berlag, NY...
- 19. Kettle F.A., Coordination Compounds, 1975. Thomas Nelson & Sons.
