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Abstract : In wastewater treatment plant clarification is a major step to remove the suspended 

solids. The performance of the primary clarifier is important as the effluent of primary clarifier 
subsequently treated further in downstream biological process. The main objective of primary 

clarifier is to remove the suspended solids present in influent wastewater. The monitoring of 

the primary clarifier operation is crucial in order to maintain the efficient performance. In this 
work, application of multivariate statastical techniques to predict or softsense the effluent 

quality of industrial primary clarifier is investigated. The industrial clariflocculator located at 

common effluent treatment plant (CETP), Vatva, Ahmedabad, India is considered. The 
Principal Component Analysis (PCA) is adopted to check and reveal the collinearity among 

influent COD, BOD, TDS and TOC. Three partial least square (PLS) models are developed to 

estimate effluent COD, BOD and TOC based on influent quality parameters. The PLS model 

of effluent TOC is found better than the PLS models for COD and BOD. It is observed that the 
fewer number of PLS components, that well explain the maximum variance in the effluent 

quality parameter (COD, BOD or TOC), gives better results. Hence, there is no need to 

consider all PLS components for effluent quality soft-sensor model development. The 
estimation of effluent COD, BOD and TOC can be done with two, three and four PLS 

components rather than all eight PLS components. These multivariate statistics based models 

are found effective and promising, hence can help avoid or reduce the need of sampling and 

experimental analysis for the effluent COD, BOD and TOC, because these can be estimated 
using soft sensors based on these PLS models using measured influent quality parameters. 
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1. Introduction 

Discharge of inadequately treated wastewater from domestic or industrial sources results in severe   ecological 
issues. The overall performance of the whole wastewater treatment plant depends upon the performance of each 

process involved in wastewater. The primary clarifier is an important equipment in wastewater treatment plants 

and its efficiency affects the performance of the subsequent processes such as biochemical processes to remove 

the organic matters from the wastewater. The monitoring and control of the processes require on-line sensors 
which are expensive and requires maintenance. Various mathematical models have been reported to assess the 

behavior of the sedimentation process occurs in the primary and secondary clarifiers. A sedimentation model 

based on solid flux theory is reported
1
. The sludge settling velocity models were investigated and compared

2
.  A 

generalized multi-layer model for sedimentation process and validated the model using field as well as pilot 

scale data. The model is capable of estimating solid profile, effluent and retentate suspended solid 

concentrations
3
. The one-dimensional model is applied to estimate the sludge blanket height in the secondary 

clarifier
4
. The simulation study of clarifiers with constant cross sectional area and varying cross sectional area, 

the effluent concentration was predicted in case of constant cross sectional area
5
. The cylindrical settler model 

was extended to conical settler. It has been shown that conical settler can handle a wide range of solids loading, 

an estimation of the characteristics of batch settling for conical settler was carried out and compared with 
experimental data

6
. The simulation of models with different values of fee flow rate and feed concentration

7
. It 

shows that at a low influent flux, the amount of solids transported to the effluent is negligible. A moderate 

increase of the influent solid flux prompts a higher steady state concentration in the underflow, while the 
effluent concentration remains unaffected. An increase in large influent flux overloads the settler, resulting in a 

non-negligible steady state effluent concentration. Also this study shows inconsistency of prediction with 

respect to the number of layers. The mathematical model for continuous sedimentation process of flocculated 
suspensions was simulated with stepwise change in feed concentration and it reveals that the model realistically 

describes the dynamics of flocculated suspensions in clarifier-thickner
8
. A fuzzy algorithm was developed for 

controlling sludge height in the secondary clarifier. The developed control strategy is based on on-line data of 

influent flow, removal and recycle flows, daily analytical values of sludge volume index. The developed 
controller has been applied to activated sludge wastewater treatment plant model located in spain and observed 

that the algorithm allow reduction in sludge height variations and thus increase the settling process efficiency
9
. 

The on-line instruments to determine the solid flux density function and the solid effective stress, the solid flux 
density function is used for flocculant selection and dosage optimization

10
. In this all studies the main objective 

is to assess the performance of clarifiers, estimation of effluent or underflow solids concentration. In one-

dimensional model of the clarifier the knowledge of the system behavior is required. In industrial WWTP at the 

primary clarifier level many other pollutants such as pH, chemical oxygen demand (COD), total organic carbon 
(TOC), biochemical oxygen demand (BOD), total dissolved solids (TDS), total suspended solids (TSS), 

amoniacal nitrogen (NH3-N) are also measured. In literature different techniques are reported to estimate the 

effluent pollutants based on measured influent pollutants. A large number of data is generally available based 
on daily analysis of samples collected at input and output side of the process or data acquisition system 

employed for monitoring. Generally statistical and artificial intelligent methods are used to develop the model 

based on available measured data.  

         Various multivariate statistics methods like PLS, NNPLS, KPLS, PCR, MPLS, MLR, APLS, RAPLS, 

QPLS are reported in the literature. In an early application for municipal activated sludge process, total 

phosphorus (TP) and COD and turbidity were estimated using conventional PLS
11

. A PLS model for estimating 
influent TP concentrations in a municipal WWTP was designed and the prediction accuracy of a model based 

on daily lab- oratory analyses was quite acceptable
12

. The Robust Adaptive PLS (RAPLS) for prediction of the 

total oxygen demand (TOD) in industrial wastewater
13

. The different data-driven modelling methods were 
compared for approximating COD concentration in the primary clarifier effluent and NH4- N concentration in 

the bioreactor of a municipal ASP
14

. They observed Generalized Least Squares Regression (GLSR) estimates to 

be less accurate than the ANN estimates. The static models were not successful in approximating the output 
variables, whereas the use of the Kalman filter remarkably improved the predictions of the DSVI

15
. Besides the 

predictions of effluent pollutant variables of the WWTP processes the statistical approaches could be used for 

the abnormal operation and online sensor fault diagnostics. A dynamic concurrent kernel partial least squares 

(DCKPLS) method was proposed for process monitoring and the performance of the process was evaluated by 
simulated sensor faults of industrial WWTP data

16
. As reported in literature various data driven techniques for 

soft sensor are applied to activated sludge process, but the soft sensor development for primary or secondary 
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clarifiers is rarely attended. We have reported mechanistic model and fuzzy inference system for the prediction 
of total suspended solids present in the effluent of primary clarifier

17
. In this study the multivariate statistical 

techniques are applied for the prediction of effluent quality parameters (COD, BOD and TOC) of primary 

clarifier to investigate effectiveness of these soft sensing techniques. This can help save significant time and 
efforts otherwise required in sampling and lab analysis towards measurement of these effluent quality 

parameters, whereas another alternative approach of using online sensors is not commercially viable due to any 

such available online sensors usually being quite expensive.  

1. Multivariate statistical  methods 

Partial least square regression (PLSR) and principal component regression (PCR) are the methods to model a 
response variable when there are a large number of predictor variables, and those predictor are highly 

correlated. Both methods construct new predictor variables, identified as components, as linear combinations of 

the original predictor variables. PCR builds components to describe observed variability in the predictor 
variables, without considering the response variable at all. PLSR creates components to explain observed 

variability in the predictor variable, considering the predictor as well as response variables. 

1.1 Principal component analysis  (PCA) 

In a data set with many variables, group of variables often move together. The reason for this is that more than 
one variable might be measuring the same driving principle governing the behavior of the system. If there are a 

large number of groups of variables in a system than, it allows to take advantage of this redundancy of 

information. The group of variables can be replaced by single variable. PCA generates a new set of variables, 

called principal components. Each principal component is a linear combination of the original variables. All the 
principal components are orthogonal to each other, so there is no redundant information. The principal 

component as a whole form an orthogonal basis for the space of the data
18

. The first principal component is a 

single axis in space, when each observation on that axis is projected the resulting values for a new variable and 
the variance of this variable is the maximum among all possible choices of the first axis. The second principal 

component is another axis in space, perpendicular to the first. Projecting the observations on this axis generates 

another new variable. The variance of this variable is the maximum among all possible choices of this second 

axis. The full set of principal components is as large as the original set of variables. But it is common place for 
the sum of the variance of the first few principal components to exceed 80% of the total variance of the original 

data. 

1.2 Partial least square regression (PLSR) 

Partial least squares (PLS) is a wide class of methods for modelling relations between sets of observed variables 
by means of latent variables. In its general form PLS creates orthogonal score vectors (latent vectors or 

components) by maximizing the covariance between different set of variables. PLS is dealing with two blocks 

of variables, one predictor variables’ block and other response variables’ block
19

.  Let       is the N-

dimensional space of predictor variables block and       is M-dimensional response variables block. The 
PLS decomposes the (n x N) matrix of zero-mean variables’ block X and the (n x M) matrix of zero-mean 

variable Y in to the form 

                                                   (1) 

                                                                                       (2) 

Where the T, U =   (n x p) matrices represent latent vectors 

                 P, Q = (N x p) and (M x p) matrices of loading vectors 

                 E, F = (n x N) and (n x M) are matrices of residuals    
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2. Results and Discussion 

 

2.1 Data collection and preprocessing 

The study is based on the clariflocculator process at common effluent treatment plant (CETP), Vatva, 
Ahmedabad. The clariflocculator consists of two concentric tanks, the inner tank acts as flocculator and the 

outer tank acts as clarifier as shown in Fig. 1.  For the same primary clariflocculator effluent total suspended 

solids (TSSe) prediction based on influent flow rate (Qf) and influent total suspended solids (TSSin) were carried 

out by incorporating mechanistic and fuzzy inference system by us. The first principle based and fuzzy based 
soft sensors were reported for the CETP primary clarifier by us.

17 
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Fig. 1 Clariflocculator at CETP 

The pollutants measured at inlet side of the clariflocculator are feed flow rate (Q f), pHin, chemical oxygen 

demand (CODin), Total organic carbon (TOCin), biochemical oxygen demand (BODin), total dissolved solids 

(TDSin), total suspended solids (TSSin) and ammoniacal nitrogen (NH3-Nin). The pollutants measured at the 

outlet side of the clariflocculator process are pHe, chemical oxygen demand (CODe), Total organic carbon 

(TOCe), biochemical oxygen demand (BODe), total dissolved solids (TDSe), total suspended solids (TSSe) and 

ammoniacal nitrogen (NH3-Ne). The measurement of COD, BOD takes more time and online sensors are costly. 

The dataset consists of different range for each pollutant variable, so first the dataset is normalized using Z 

score normalization, where x, µ and σ are score, mean and standard deviation.  

                                                  z=((x-μ))/σ                          (3) 

The normalized data is shown in Fig. 2. The red dots represent outliers present in the dataset. The outliers are 

removed from the dataset and rest of the data is used for multivariate statistical models. 
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Fig.2 Normalized values of all influent and effluent variables 

 

3.2 Correlation coefficient  
 

A correlation coefficient is a numerical measure indicating statistical relationship between two variables. If the 
correlation coefficients lie between two variables in the range of 0.5 to 0.7, 0.8 to 1 than relationship is 

moderate and strong respectively. The correlation coefficients among all influent and effluent pollutants are 

represented in Table 1. 

Table 1 Correlation coefficients among all influent and effluent pollutants
17 

 

As per the values represented in Table 1, the following relationship among effluent and influent 

pollutants exist. 

 
TSSe = f (TSSin)                                                                      (4) 

CODe= f (CODin, TOCin, TDSin, BODin)                               (5) 

TDSe=f(TDSin, CODin, BODin)                                               (6) 

TOCe = f ( TOCin, CODin, TDSin, BODin)                              (7) 

BODe= f(BODin)                                                                     (8) 

NH3-Ne=f(NH3-Ne)                                                                 (9) 
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3.2 PCA of plant data 

The principal component is applied to all influent variables of primary clariflocculator of the plant. The loading 

plot of principal component (PC1) and PC2 is shown in Fig.2, the influent pollutants CODin, TOCin, TDSin, 

BODin, TSSin lie in the same group. The loading of each component is represented in Table 2. 

  

Fig.2 PCA loading plot 

 

Table 2 Loading of each principal component 

Variables PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Qf -0.2601     0.5905 -0.2066 0.6610 -0.1755 0.2665 0.0447 -0.0171 

pHin 0.0418 0.1542 0.8919 -0.0160 -0.3571 0.1978 -0.0530 -0.0954 

CODin 0.4669 0.2401 -0.0113 -0.0247 -0.1730 -0.1142 0.1680 0.8077 

TOCin 0.4748 0.1133 -0.1076 -0.0367 -0.1494 -0.0267 0.6960 -0.4913 

BODin 0.4523 0.0162 -0.1483 0.1301 0.1924 0.7879 -0.3087 -0.0555 

TDSin 0.3945 0.1580 -0.1706 0.0643 -0.3791 -0.4212 -0.6184 -0.2875 

TSSin 0.3187 0.0845 0.3146 0.4452 0.7226 -0.2549 -0.0566 -0.0608 

NH3-Nin -0.1592 0.7244 0.0030 -0.5845 0.2939 -0.1134 -0.0413 -0.0856 

 

As per the Table 2, principal component 1 (PC1) exhibits that CODin, TOCin, BODin,TDSin are group of 

variables with collinear relationship. The percentage variance explained by PC1, PC2, PC3, PC4, PC5, PC6, 
PC7 and PC8 are 37.3, 15.1, 13.2, 10.8, 8.6, 7.5, 3.8 and 3.3 respectively. The first six principal components out 

of eight components explain 85% variance. In place of considering all PCA variables the first six are 

representative of the influent variables. 

3.3 Partial least square models 

The partial least square models for the estimation of CODe, BODe and TOCe   as a function of other measured 

influent variables have been developed. The data within the  range of influent variables  Qf  (218-1080 m
3
/h), 

pHin (7.14-8.24), CODin (1180-3800 mg/L), TOCin (273-1270 mg/L), BODin (212-1333mg/L), TDSin (10980-
24820 mg/L), TSSin (140-1196 mg/L), NH3-Nin (31-175 mg/L) are considers for PLS models. 
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The partial least square technique converts the original dataset into number of PLS components. Fig.3 (a,b,c) 
represents the percentage variance explained by the eight components, in CODe, BODe and TOCe.  The first 

three PLS components explain 80% variance in CODe ,  in BODe first three PLS components explain 78% 

variance, and  in  TOCe  78% variance is explained by first four PLS components.  

 
 

(a) Variance explained by PLS components in CODe 

 

(b) Variance explained by PLS components in BODe 

 

(c) Variance explained by PLS components in BODe 
 

Fig.  3 Percentage variance explained by PLS components in CODe, BODe and TOCe 
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For development of PLS models 140 days data in the mentioned range of influent variables are 

considered, 70% of data is considered for model training and 30% data is considered for model testing. 

The results of the PLS models of CODe, BODe and TOCe for training and test data are shown in Fig. 4. 

 

 
 

(a) Predicted vs measured CODe 

 

 

(b) Predicted vs measured BODe 
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(c) Predicted vs measured TOCe 

Fig.4 Measured vs predicted CODe, BODe, TOCe for training and test datasets 

 

The error analysis of all the three PLS models for the estimation of CODe, BODe  and TOCe  are 

shown in the Table 3.  

Table 3 Error analysis of PLS models 

 CODe BODe TOCe 

Training 

data sets 

Testing 

data sets 

Training 

data sets 

Testing 

data sets 

Training 

data sets 

Testing 

data sets 

R
2 

0.80 0.84 0.78 0.68 0.77 0.8 

Normalized RMSE  (%) 10.3 9.7 10.4 14.6 10.7 9.6 

MAPE (%) 8.3 6.4 13.9 12.3 9.8 9.2 

 
The correlation coefficients among influent and effluent variables show that CODe, BODe, TOCe are related 
with influent CODin, BODin and TOCin. Also the principal component analysis exhibits that CODin, BODin, 

TDSin and TOCin are correlated. The PLS model of CODe is promising as compared to PLS models of BODe 

and TOCe with reference to R
2
, normalized root mean squared error (NRMSE) and mean absolute percentage 

error (MAPE). 

 

4 Conclusion 

The relationship among influent and effluent quality parameters of plant primary clarifier is carried out along 
with collinearity among influent quality parameters CODin, BODin, TDSin, TOCin using principal component 

analysis. In case of CODe, BODe, TOCe, the selection of PLS components that explain up to 80% variance 

result in data size reduction with promising estimation.the explained variance is explained by three PLS 

components. The applied PLS models can estimate effluent CODe, BODe, TOCe based on other influent quality 
parameters. As the CODe, BODe and TOCe are estimated from the existing influent measured parameters, the 

time and efforts required for sampling and experimental laboratory analysis for these effluent parameters can be 

reduced. 
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