

International Journal of ChemTech Research

CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.13 No.03, pp 265-273, **2020**

Synthesis and Characterization of Co(II) and Ni(II) complexes of Schiff base derived from Ninhydrin and Valine

BekeleYirga¹ and Achalu Chimdi²* and P.Thillai Arasu³

^{1,3}Department of Chemistry, College of Natural and Computational Sciences, ³Wollega University P.O Box: 395, Nekemte, Ethiopia

²*College of Agriculture and Veterinary Sciences, Ambo University P.O Box: 19, Ambo, Ethiopia

Abstract : In this study, Complexes of Co (II) and Ni (II) ions with Ruhmann's purple (ligand) were successfully synthesized and characterized. The complexes of NiL₂and CoL₂were synthesized by using template condensation synthesis method and characterized by melting point, solubility, elemental analysis, and molar conductance, and magnetic susceptibility, infrared and electronic spectral studies. The complexes, NiL₂and CoL₂ are soluble in ethanol, partially soluble in Diethyl ether and chloroform and insoluble in hexane and petroleum ether. The complexes, NiL₂and CoL₂ neither melt nor decompose up to 420°C. The molar conductance of NiL₂and CoL₂ was 42 Scm²/mol and 46Scm²/mol in respectively. The molar magnetic susceptibility of two complexes was 1.74 BM for NiL₂ and 2.76 BM for CoL₂. The metal to ligand ratio of both metal complexes was 1:2; both metal complexes are non-electrolytes in ethanol and are paramagnetic at 21°C. Based on the spectral data and other analytical data, monobasic ONO donor behavior of the ligand (Ruhmann's purple) generates octahedral geometry for the pink-green colored Ni (II) complex and green colored Co (II) complex.

Keywords: Co(II) & Ni(II) Complex, Ninhydrin, Ruhmann's purple Schiff base.

Achalu Chimdi et al/International Journal of ChemTech Research, 2020,13(3): 265-273.

DOI= http://dx.doi.org/10.20902/IJCTR.2019.130324
