

International Journal of ChemTech Research

CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.13 No.03, pp 203-209, 2020

ChemTech

Synthesis, Characterization and Antimicrobial Studies of SnO₂ Nanoparticles

Sumathi .P¹*

¹Department of Chemistry, Gobi Arts & Science College, Erode, Tamilnadu, India

Abstract : This study was involved to synthesize and investigate the antimicrobial properties of highly pure nanocrystalline SnO₂ by simple chemical method. In the nanorods, SnO₂ nanoparticles, with a size of about 74 nm, the SnO₂ nanoparticles were maximum antibacterial activity against both bacterial and fungal with the zone of inhibition for Klebsiella pneumoniae, Staphylococcus aures, Salmonella typhi and Ascerpergillus Flavus, Ascerpergillus Niger from 25μ g/ml and 100μ g/ml respectively. SnO₂ nanoparticles showed good activity against both Gram-negative and Gram-positive bacteria confirming these as future broad spectrum antibacterial a cost effective way and to study its antimicrobial properties. We observed an effective antibacterial and antifungal activity of the SnO₂ nanoparticle against bacteria and fungi. The results showed that SnO₂ nanoparticles enhanced the good antibacterial activity.

Keywords : SnO₂ Nanoparticles, Klebsiella pneumoniae, Staphylococcus aures, Salmonella typhi.

Sumathi .P et al /International Journal of ChemTech Research, 2020,13(3): 203-209.

DOI= <u>http://dx.doi.org/10.20902/IJCTR.2019.130317</u>
