

International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.13 No.01, pp 206-216, 2020

Thermodynamic Studies of Complexes of Amlodipine Besylate with Ni²⁺, Mg²⁺, Co²⁺ and Ca²⁺ cations in pure and in mixed binary solvent systems at 303.15, 313.15 and 323.15 K by Conductometric Method

Dhruvi. R. Mehta¹, Raviprakash S. Chandra², M. M. Maisuria³*

¹Department of Chemistry, Gujarat University, Ahmedabad-380008, Gujarat, India.
²Institute of Advanced Research, Gandhinagar, Gujarat, India.
³Department of Chemistry, Gujarat University, Ahmedabad-380008, Gujarat, India.

Abstract : The present work relates to the complexation reaction between Amlodipine Besylate[AML] with Ni²⁺, Mg²⁺, Co²⁺ and Ca²⁺ cation in dimethylsulfoxide (DMSO), pure methanol (MeOH) and their binary mixtures(DMSO-MeOH and DMSO-Water) by conductometric method. The conductance data show that the stoichiometry of the complexes formed between AML with Ni²⁺, Mg²⁺, Co²⁺ and Ca²⁺ cation in pure DMSO, pure MeOHas well as in the binary solvent mixtures was 1:1. The stability of AML complexes with Ni²⁺, Mg²⁺, Co²⁺ and Ca²⁺ metal ion was observed to be sensitive to the nature of the solvent system. In case of DMSO-Water binary solvent systems there was a linear change in LogK_f values but in case of DMSO-MeOH binary solvent systems non linear change in LogK_f values observed. The negative values of ΔG^0 show that the reaction is spontaneous and ability of the AML ligand to form stable complexes. However, the result shows positive value of ΔH^0 which indicates that enthalpy is not driving force for the formation of the complexes. Furthermore, the positive value of ΔS^0 indicates that entropy is a driving force for the complexation. The values of ΔH^0 and ΔS^0 for formation of the complexes were obtained from temperature dependence of the stability constants.

Keywords : Complexes, Conductance, Formation constants, Thermodynamics, Amlodipine Besylate.

M. M. Maisuria et al / International Journal of ChemTech Research, 2020,13(1): 206-216.

DOI= <u>http://dx.doi.org/10.20902/IJCTR.2019.130125</u>