

International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.12 No.03, pp 72-79, 2019

Synthesis, Characterization and Antimicrobial Studies Of A Schiff Base Derived From 1,8 Diaminonaphthalene And 2-Hydroxy-1-Naphthaldehyde With Its Metal Complexes

Esther,I.Ville¹, Naomi,P. Ndahi^{1,*}, Aliu,A Osunlaja¹, Olufunke,A. Sodipo²

¹Department of Chemistry, Faculty of Science, University of Maiduguri, Maiduguri, Borno State, Nigeria
²Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Maiduguri, Maiduguri, Nigeria

Abstract : The metal complexes of Mn(II), Hg(II), Pb(II), Cd(II), Fe(III) and Cr(III) have been synthesized from a Schiff base ligand (HL) derived from the condensation of 2- hydroxy-1-naphthaldehyde with 1,8 diaminonaphthalene. The compounds were characterized by elemental analysis, M.pt, IR and ¹HNMR. The elemental analysis revealed a 1:2 molar ratio (amine:aldehyde) for the ligand (HL) and 1:1 molar ratio (M:L) for the complexes. The IR spectra showed the azomethine (>C=N) bond around 1624 cm⁻¹ in the ligand. This was shifted to higher frequencies in the complexes. The doublet signals in the range δ 10.08-10.82 ppm in the ¹HNMR of the ligand is assigned to the azomethine proton (>C=N) group. The multiplet signals in the range δ 6.30-8.90 ppm, indicated aromatic proton. The synthesized compounds were assayed for antibacterial activity against some pathogenic bacteria such as Gram positive: *Staphylococcus aureus, Streptococcus pyogenes*) and two Gram negative (*Escherichia coli, Klebsiella pnuemonae*) and two fungi (*Aspergillus niger* and *Candida albicans*) using filter paper disc agar diffusion method.

Keywords : 2- hydroxy-1-naphthaldehyde , 1,8 diaminonaphthalene, Schiff base, metal(II) complexes, infrared, antimicrobial activity.

Naomi, P. Ndahi et al / International Journal of ChemTech Research, 2019,12(3): 72-79.

DOI= <u>http://dx.doi.org/10.20902/IJCTR.2019.120312</u>
