

International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.11 No.05, pp 387-393, 2018

Antioxidant content of Tomatoes (*Lycopersicon esculentum* cv MT1) treated by different type of Pesticide, Fertilizer and growth medium in Compost

Aishah Elias, Sahilah Abd. Mutalib*, Wan Aida Wan Mustapha, Safiyyah Shahimi, Norhidayu Mohamed, Rul Aisyah Mat Repin

School of Chemical Science and Food Technology, Faculty of Science and Technology Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

Abstract : Antioxidant of tomato (Lycopersicon esculentum Mill. cv MT1) that have been pla nted according to split split plot experimental design and subjected to sixteen (n=16) treatment s namely as T1 to T16 were evaluated. The antioxidant of tomato extracts were determined by three methods namely total phenolic content (TPC), free radical scavenging activity (DPPH) a nd Ferric Reducing Antioxidant Power (FRAP). The highest mean efficiency for TPC and DPP H values in tomato were from T7, 1163.6 mg Gallic acid equivalent (GAE)/100 g and 55.7 % (chemical pesticide, mixture of organic and chemical fertilizer; and growth medium in cow ma nure compost). However T3, 54.2 % (chemical pesticide, organic fertilizer and growth mediu m in cow manure compost) showed significantly highest for DPPH only. FRAP values for T2, 9.00 µmol trolox equivalent (TE)/100 g (chemical pesticide, without fertilizer and growth med ium in EFB compost) treatment showed significantly higher (p<0.05) than other treatment. Pea rson coefficient correlation test showed positive correlation (p<0.05) between TPC and DPPH assay (r=0.933) and FRAP assay (r=0.874), respectively showed that the phenolic compounds was a contributor of the antioxidant activity in tomato. Thus, the finding of this study demonst rated that pesticide, fertilizer and growth medium in compost factor and their interaction did n ot show any specific patterns content toward TPC, DPPH and FRAP; while the TPC was the m ain contributor of antioxidant activity in tomat

Keywords : Antioxidant; tomato; pesticide; compost; fertilizer.

International Journal of ChemTech Research, 2018,11(05): 387-393.

DOI= <u>http://dx.doi.org/10.20902/IJCTR.2018.110543</u>

1.