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Abstract : An optimal load-flow solution gives the optimal active and reactive power dispatch 
for a static power system loading condition. Computationally, it is a very demanding nonlinear 

programming problem, due to the large number of variables and in particular to the much 

larger number of variables and in particular to the much larger number and types of  limit 
constraints which define the boundaries of technical feasibility This paper solves the standard 

26 bus power system network. 
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I. Introduction 

One of most important and frequently used analysis and computational procedures for the planning, 

design, and operation of an electric power system is the ac power-flow program. This program constitutes a 

simulation of the steady-state ac power flows and voltages in the network under study. It is used to simulate the 
flows and voltages corresponding to several future load conditions for various design alternatives. If the system-

design alternative under consideration is not capable of supplying the assumed loads then the set of values for 

some of the control variables such as voltage levels or power productions; capacitors are adjusted. Much of this 

time-consuming trial-and error process is reduced by the optimum power flow, and provide a set of feasible 
values of the control variables. Optimum power-flow solutions may be used not only for system planning but also 

for system operation, which is a real-time function. In operation, it provides the most economical operating point 

that meets all the flow and voltage constraints related to power-system security and quality of service. The 
standard 26 bus test system which has 6 generators, 7 transformers and 9 shunt capacitor is considered in this 

work. 

II. Problem formulation 

The steady state Optimal Power Flow problem is a minimization problem which is stated as follows. The 

objective is to minimize the generation cost. 
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Where, λ – Lagrange multiplier, μi – Khun-tucker function multiplier 

The minimum of this unconstrained function is found at the point where partials of the function to its 
variables are zero 

0




iP

L
     (9)   0







L
                   (10) 

0
(max)






i

L


     (11)   0

(min)






i

L


     (12)  

µi(max) and µi(min) are zero when Pi is within its limit 

From Equation – (9), 
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Where, Penalty Factor,  
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From equation 13,  
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This equation is extended to all generating plants results in following linear equation in matrix form 
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To find the optimal dispatch for an estimated λ the simultaneous linear equation 17 is solved to find P matrix. 
Then the iteration process is continued using the gradient method. To do this, from equation 16, Pi at the kth 

iteration is 
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Substitute equation 19 in equation 10, 












ng

i

LD

ii

k

i

ij

k

jij

k

ii

k

PP
B

PBB

1

0

)(2

2)1(





           (19) 

This can be written as   f(λ) = PD + PLk                        (20) 

Expand the equation 21 L.H.S. using Taylor‟s series about an operating point λk and neglecting the higher order 

terms 
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The process is continues until ΔPk is less than a specified accuracy  

III. Test System 

26 bus power system network is considered. Bus 1 is taken as slack bus its voltage adjusted to 1.025 

angle 0
o
 and P1Max = 500Mw, P1Min=100 Mw, the data for the other generator buses are 

Bus 

No 

Voltage 

Mag. 

(pu) 

QMin 

(Mvar) 

QMax 

(Mvar) 

PMin 

(Mw) 

PMax 

(Mw) 

2 1.02 40 250 50 200 

3 1.02 40 150 80 300 

4 1.05 40 80 50 150 

5 1.04 40 160 50 200 

26 1.01 15 50 50 120 

 

Transformer Data 

Between Buses Tap setting (pu) 

2 -3 0.96 

2-13 0.96 

3-13 1.017 

4-8 1.05 

4-12 1.05 

6-19 0.95 

7-19 0.95 

 

Shunt Capacitive Data 

Buses No Mvar 

1 4.0 

4 2.0 

5 5.0 

6 2.0 

9 3.0 

11 1.5 

12 2.0 

15 0.5 

19 5.0 

Generators operating costs in $/h 

C1 = 240 + 7.0 P1 +  0.007  P1
2
 

C2 = 200 + 10  P2 + 0.0095 P2
2
 

C3 = 220 + 8.5 P3 +  0.009  P3
2
 

C4 = 200 + 11  P4 +  0.009  P4
2
 

C5=220+10.5P5+0.008P5
2 

C26= 190 + 12 P26 +0.0075 P26
2
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IV. Test Result 

Test result for the 26 bus power system is summarized in the following table  

Description 

Base Case 

Power 

Flow 

Optimal Power 

Flow 
Savings 

Total Generation Cost ($/h) 
16760.73 15447.72  

 

1313.01  

Total system loss (Mw) 15.53  12.807   2.723  

System Power Generation 
by the generators (Mw) 

  474.1196  

  173.7886 

  190.9515 
  150.0000 

  196.7196 

  103.5772 

  447.6919 

  173.1938 

  263.4859 
  138.8142 

  165.5884 

   87.0260 

 

Incremental cost of 

delivered power (λ) 

($/MWh) 

13.911780  13.538113   

 

V. Conclusion 

The optimum power flow has been defined and its advantages over the ordinary power flow have been 
shown to be greatly reduced trial and error. It has been shown that Newton's method of power flow solution can 

be extended to yield an optimal power flow solution that is feasible with respect to all relevant inequality 

constraints. The main features of the method are a gradient procedure for finding the optimum and the use of 
penalty functions to handle functional inequality constraints. 
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