

# **International Journal of ChemTech Research**

CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.11 No.03, pp 192-209, **2018** 

ChemTech

# Stability Indicating RP-HPLC Method for Simultaneous Estimation of Reserpine, Dihydralazine Sulphate and Hydrochlorothiazide in Bulk and Pharmaceutical Dosage forms

Vellaturi Padmaja<sup>\*1</sup>, Abdul Rahaman<sup>2</sup>, K.Shanta Kumari<sup>3</sup>, G.Seetha Kumari<sup>4</sup>

# <sup>1,2,3,4</sup>Nirmalacollege of Pharmacy, Atmakuru, Mangalagiri, Guntur district-522 503,India.

**Abstract :** A simple, specific and accurate RP-HPLC method was developed for the simultaneous estimation of Reserpine, Dihydralazine sulphate and Hydrochlorothiazide in tablet dosage forms. A reversed phase Phenomenexluna C18,  $250 \text{mm} \times 4.6 \text{ mm}$ ,  $5\mu\text{m}$  and UV-Visible detector with mobile phase consisting of Acetonitrile and buffer 70:30(v/v) were used. Empower version 2 software was used. The flow rate was 1.0ml /min and effluents were monitored at 240nm. The retentiontime for Reserpine, Dihydralazine sulphate and Hydrochlorothiazide in tablet formulation were found to be 8.4min, 2.2min, and 4.7min respectively. The method was validated according to ICH guidelines for specificity, LOD, LOQ, Precision, Accuracy, Linearity, Ruggedness and Robustness. The method showed good reproducibility and recovery with %RSD less than 2.

**Keywords :** Reserpine , Dihydralazine sulphate, Hydrochlorothiazide, RP-HPLC, validation as per ICH guidelines, stability indicating.

## **Introduction** :

Combination therapy or poly therapy is therapy that uses more than one medication. Typically, these terms refer to using multiple therapies to treat a single disease. <sup>1</sup>Poly therapy is a related term, referring to the use of multiple medications.<sup>2</sup>The combination of Reserpine, Dihydralazine sulphate and Hydrochlorthiazide are used for the treatment of Hypertension. <sup>3</sup>Mainly the Reserpine which lowers the blood pressure to prevent strokes, heart attacks and kidney problems.<sup>4</sup>The Hydrochlorthiazide is a diuretic which reduces the reabsorption of electrolytes from the renal tubules.<sup>5</sup>Reserpine (also known by trade names Raudixin, Serpalan, Serpasil) is an indole alkaloid, antipsychotic, and antihypertensive drug that has been used for the control of high blood pressure and for the relief of psychotic symptoms.<sup>6</sup>Biochem/physiol Actions. Dihydralazinesulfate is a vasodilator and an antihypertensive agent. It relaxes arterial smooth muscle by inhibiting the accumulation of intracellular free calcium. By relaxing vascular smooth muscle, vasodilators act to decrease peripheral resistance. The methods are published for individual drugs and also for 2 drugs i.e Dihydrochlorothiazide and Hydrochlorothiazide and Hydrochlorothiazide and Hydralazine sulphate and Hydrochlorothiazide in combination of reserves the prevent.

# International Journal of ChemTech Research, 2018,11(03): 192-209

DOI : http://dx.doi.org/10.20902/IJCTR.2018.110322

# Drug profile of 3 drugs :

1.Reserpine :

#### **Structure:**



Reserpine

## **IUPAC name:**

Methyl  $(3\beta, 16\beta, 17\alpha, 18\beta, 20\alpha)$ -11,17-dimethoxy-18-[(3, 4, 5-trimethoxybenzoyl)oxy]yohimban-16-carboxylate.

## 2.Dihydralazine sulphate:

## Structure :



## **IUPACname:**

4-hydrazinyl-1-hydrazinylidene-1,2-dihydropthalazine sulphate

## 3. Hydrochlorothiazide :

## Structure :



## **IUPAC name:**

6-chloro-1,1-dioxo-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide.

## Materials and methods:

## **Drug samples**:

Reserpine, Dihydralazine sulphate and Hydrochlorothiazide pure drugs were procured from ICON laboratories Vijayawada, India . HPLC gradeAcetonitrile, HPLC grade water, Orthophosphoric acid were purchased from Merk and Rankem, India.

#### Instrumentation:

| Instrument         | Specifications                 |
|--------------------|--------------------------------|
| HPLC               | Waters, 2695 separation module |
| Software           | Empower, version 2.0           |
| Detector           | UV- visible detector           |
| Analytical balance | Shimadzu                       |

### **Optimised chromatographic conditions:**

By performing the trails the chromatographic conditions were optimised as follows

Buffer : 1ml of Orthophosphoric acid was taken in 1litre of water Mobile phase : Mixed Acetonitrile and buffer in the ratio 70:30% v/v Diluents : Used mobile phase as diluent Column : PhenomenexlunaC18(250×4.6mm) Flow rate : 1ml/min Wavelength : 240nm Injectionvolume:20µl ColumnTemperature : Room temperature

## Standard solutionpreparation :

## Solution A:(Reserpine)

Accuratelyweighed 0.1mg of Reserpine working standard into a 100ml volumetric flask. Added 70ml of diluentand sonicated to dissolve and then the volume was made up to mark with diluent.

## Solution B:(Dihydralazine sulphate):

Accurately weighed10mg of Dihydralazine sulphate working standard into a 100ml volumetric flask. Added 70ml of diluent ,and sonicated to dissolve then the volume is made up to the mark with diluent.

#### Solution C:(Hydrochlorothiazide):

Accurately weighed10mg of Hydrochlorothiazide working standard in to a 100ml volumetric flask. Added 70 ml of diluent, and sonicated to dissolve then the volume is made up to the mark with diluent.

#### Sample preparation:

Reserpine- 0.1mg Dihydalazine sulphate- 10mg, Brand name :Adelphane Hydrochlorothiazide -10mg.

Weighed 10 tablets and crushed to powder then 1 tablet equivalent powder was taken into a 250ml volumetric flask. 200ml of diluent was added, and sonicated to dissolve then the volume is made up to the mark. Further 5ml of this sample solution is diluted to 100ml with the diluent. It is filtered through  $0.45\mu$  nylon syringe filter.

# **Procedure:**

 $20\mu$ l of standard preparation was injected five times and the system suitability parameters were noted from the recorded chromatogram. Then the sample solution was injected 5 times and the peak responses for the Reserpine ,Dihydralazine sulphate and Hydrochlorothiazide were noted from chromatograms and calculated the content of these drugs in the sample.

| I UNIC II | Table | 1: |
|-----------|-------|----|
|-----------|-------|----|

| Drug                   | Labelled amount (mg) | Amount<br>present(mg) | % assay |
|------------------------|----------------------|-----------------------|---------|
| Reserpine              | 0.1                  | 0.10                  | 100.4   |
| Dihydralazine sulphate | 10                   | 10.40                 | 100.6   |
| Hydrochlorothiazide    | 10                   | 9.8                   | 99.8    |



Fig1: A representative chromatogram of blank

RESERPINE\_DIHYDRALIZINE SULPHATE\_HCTZ



Fig2 : A representative chromatogram of standard



#### Fig3 : A representative chromatogram of sample

#### Method validation:

| S.NO | Name of the sample     | USP plate count | USP tailing    |
|------|------------------------|-----------------|----------------|
|      |                        | ( <b>n=5</b> )  | ( <b>n=5</b> ) |
| 1    | Reserpine              | 11630           | 1.31           |
| 2    | Dihydralazine sulphate | 11637           | 1.48           |
| 3    | Hydrochlorothiazide    | 12514           | 1.28           |

### **Observation :**

From the system suitability studies it is observed that all parameters are within limits. Hence it is concluded that the instrument, reagents, and column are suitable to perform the assay.

#### Linearity:

Linearity of detector response for Reserpine, Dihydralzine sulphateand Hydrochlorothiazide was established for 6 concentrations ranging from 1  $\mu$ g/ mlto 15  $\mu$ g/ ml, 1 $\mu$ g/ml to 15  $\mu$ g/ml, 100  $\mu$ g/ml to 750  $\mu$ g/ml of the target concentration. The final concentration of each solution in  $\mu$ g/ml was calculated and plotted against area response. The slope, y-intercept, correlation coefficient (R) were calculated. The linearity data was given in below table:

Table 3: Linearity data for Reserpine, Dihydralazine sulphate, and Hydrochlorthiazide

| Drug name | Concentrationin | Peak area |
|-----------|-----------------|-----------|
|           | µg/ml           |           |
|           | 0               | 0         |
|           | 1.82            | 238088    |
|           | 3.23            | 493708    |
| Reserpine | 4.04            | 629046    |
|           | 4.85            | 778489    |
|           | 6.87            | 1050185   |
|           | 8.89            | 1373644   |
|           | 10.50           | 1579270   |
|           | 15.150          | 2338575   |

|                        | 0                                     | 0                                                          |
|------------------------|---------------------------------------|------------------------------------------------------------|
|                        | 1.87                                  | 189900                                                     |
|                        | 3.33                                  | 390364                                                     |
|                        | 4.16                                  | 483925                                                     |
| Dihydralazine sulphate | 4.99                                  | 579119                                                     |
|                        | 7.07                                  | 856703                                                     |
|                        | 8.32                                  | 102940                                                     |
|                        | 9.57                                  | 119127                                                     |
|                        | 15.600                                | 189410                                                     |
|                        | 0                                     | 0                                                          |
|                        | 1.84                                  | 141368                                                     |
|                        | 3.26                                  | 278260                                                     |
|                        | 4.08                                  | 274070                                                     |
|                        | 4.08                                  | 3/48/8                                                     |
| Hydrochlorothiazide    | 4.08                                  | 464067                                                     |
| Hydrochlorothiazide    | 4.08<br>4.90<br>6.94                  | 464067<br>650805                                           |
| Hydrochlorothiazide    | 4.08<br>4.90<br>6.94<br>8.16          | 374878       464067       650805       755565              |
| Hydrochlorothiazide    | 4.08<br>4.90<br>6.94<br>8.16<br>10.00 | 374878       464067       650805       755565       956220 |



Fig 4:Linearity graph for Reserpine



Figure5 : Linearity graph for Dihydralazine sulphate



Figure 6:Linearity graph of Hydrochlorothiazide

#### **Observation:**

Results meet the established acceptance criteria where the correlation coefficient is found to be0.999.



Fig 7: Chromatogram level of linearity

#### Accuracy:

The Accuracy was conducted for Reserpine, Dihydralazinesulphate and Hydrochlorothiazide. Assay in Triplicate (50%, 100%, and 150%) as per test method with equivalent amount of drug containing Reserpine, Dihydralazinesulphate and Hydrochlorothiazide into each volumetric flask, for each spike level to get the concentration of Reserpine, Dihydralazinesulphate and Hydrochlorothiazide equivalent to 50%, 100%, and 150% of the labelled amount as per the test method. The average % recovery was calculated.

| S.No. | Accuracy | Amount<br>Added<br>(mg) | Area    | Amt<br>recovered | % Recovery | Results    |
|-------|----------|-------------------------|---------|------------------|------------|------------|
| 1     | 50%      | 1.17                    | 602536  | 119.19           | 100.2      | Mean=100.2 |
| 2     | 50%      | 1.16                    | 603163  | 119.32           | 99.8       | SD=0.40    |
| 3     | 50%      | 1.16                    | 605818  | 119.84           | 100.6      | %RSD=0.440 |
| 1     | 100%     | 2.43                    | 1258883 | 249.03           | 100.1      | Mean=100.2 |
| 2     | 100%     | 2.42                    | 1249694 | 247.21           | 99.9       | SD=0.31    |

Table-4 : Accuracy results of Reserpine by HPLC

| 3 | 100% | 2.41 | 1247854 | 246.85 | 100.5      | %RSD=0.310 |
|---|------|------|---------|--------|------------|------------|
| 1 | 150% | 4.78 | 2474621 | 489.53 | 100.2      | Mean=100.4 |
| 2 | 150% | 4.76 | 2474236 | 489.45 | 100.4      | SD=0.20    |
| 3 | 150% | 4.78 | 2879771 | 489.04 | 100.6      | %RSD=0.200 |
|   |      |      |         |        | Mean=100.3 |            |
|   |      |      |         |        | SD=0.115   |            |
|   |      |      |         |        | %RSD=0.11  |            |

|  | T | able | 5: | Accuracy | results | of Dih | vdralaz | zine suli | phate by | <b>HPLC</b> | 1 |
|--|---|------|----|----------|---------|--------|---------|-----------|----------|-------------|---|
|--|---|------|----|----------|---------|--------|---------|-----------|----------|-------------|---|

| S.No. | Accuracy | Amount<br>Added<br>(mg) | Area    | Amt<br>recovered | % Recovery | Results    |
|-------|----------|-------------------------|---------|------------------|------------|------------|
| 1     | 50%      | 25.8                    | 480906  | 26.02            | 100.9      | Mean=100.5 |
| 2     | 50%      | 26.20                   | 487212  | 26.36            | 100.6      | SD=0.38    |
| 3     | 50%      | 26.40                   | 488617  | 26.43            | 100.1      | %RSD=0.380 |
| 1     | 100%     | 52.20                   | 969818  | 52.47            | 100.5      | Mean=100.6 |
| 2     | 100%     | 51.60                   | 962912  | 52.09            | 100.9      | SD=0.260   |
| 3     | 100%     | 51.90                   | 963942  | 52.15            | 100.5      | %RSD=0.260 |
| 1     | 150%     | 98.50                   | 1836079 | 99.33            | 100.8      | Mean=100.7 |
| 2     | 150%     | 98.60                   | 1838943 | 99.48            | 100.9      | SD=0.32    |
| 3     | 150%     | 99.20                   | 1839604 | 99.52            | 100.3      | %RSD=0.310 |
|       |          |                         |         |                  | Mean=100.6 |            |
|       |          |                         |         |                  | SD=0.1     |            |
|       |          |                         |         |                  | %RSD=0.1   |            |

Table-6: Accuracy results of hydrochlorthiazide by HPLC

| S.No. | Accuracy | Amount<br>Added<br>(mg) | Area    | Amt<br>recovered | % Recovery | Results    |
|-------|----------|-------------------------|---------|------------------|------------|------------|
| 1     | 50%      | 24.7                    | 344921  | 24.86            | 100.6      | Mean=100.3 |
| 2     | 50%      | 25.2                    | 348763  | 25.14            | 99.8       | SD=0.50    |
| 3     | 50%      | 24.6                    | 343316  | 24.75            | 100.6      | %RSD=0.500 |
| 1     | 100%     | 49.1                    | 685905  | 49.44            | 100.7      | Mean=100.1 |
| 2     | 100%     | 49.1                    | 680786  | 49.08            | 100.0      | SD=0.49    |
| 3     | 100%     | 49.3                    | 682231  | 49.18            | 99.8       | %RSD=0.490 |
| 1     | 150%     | 97.80                   | 1316730 | 98.16            | 100.4      | Mean=100.3 |
| 2     | 150%     | 98.20                   | 1369154 | 98.7             | 100.5      | SD=0.19    |
| 3     | 150%     | 98.40                   | 1366916 | 98.54            | 100.1      | %RSD=0.180 |
|       |          |                         |         |                  | Mean       |            |
|       |          |                         |         |                  | =100.2     |            |
|       |          |                         |         |                  | SD=0.115   |            |
|       |          |                         |         |                  | %RSD=0.11  |            |

## **Observation:**

The %recovery results indicating that the test method has an acceptable level of accuracy.

## Precision:

## 1. System precision:

For injection repeatability, six injections from the same standard preparations were made and the relative standard deviation for the replicate injections was calculated. The readings of system precision were given in below tables:

| S. No. | RT(min) | Area        | USP Plate<br>count | USP tailing |
|--------|---------|-------------|--------------------|-------------|
| 1      | 8.407   | 259066      | 12035              | 1.32        |
| 2      | 8.407   | 258944      | 12031              | 1.32        |
| 3      | 8.407   | 258269      | 12049              | 1.31        |
| 4      | 8.441   | 254976      | 11588              | 1.25        |
| 5      | 8.444   | 257799      | 11117              | 1.35        |
| 6      | 8.453   | 256746      | 10990              | 1.34        |
|        |         | Mean=257633 |                    |             |
|        |         | %RSD=0.603  |                    |             |

| Table-7: System precision values of Reservine by HP | LC | 2 |
|-----------------------------------------------------|----|---|
|-----------------------------------------------------|----|---|

| Table- 8: System precision values of I | Dihydralazine sulphate by HPL | 2 |
|----------------------------------------|-------------------------------|---|
|----------------------------------------|-------------------------------|---|

| S No. | RT(min) | Area        | USP Plate<br>count | USP tailing |
|-------|---------|-------------|--------------------|-------------|
| 1     | 2.235   | 941686      | 1.50               | 1.50        |
| 2     | 2.235   | 9490991     | 1.50               | 1203        |
| 3     | 2.235   | 9392011     | 1.49               | 1204        |
| 4     | 2.221   | 946578      | 1.48               | 1158        |
| 5     | 2.218   | 945217      | 1.52               | 1111        |
| 6     | 2.216   | 9490169     | 1.43               | 1099        |
|       |         | Mean=942307 |                    |             |
|       |         | %RSD=0.311  |                    |             |

## Table-9: System precision values of Hydrochlorthiazide by HPLC

| S.No | RT(min) | Area        | USP Plate<br>count | USP tailing |
|------|---------|-------------|--------------------|-------------|
| 1    | 4.768   | 722455      | 1.27               | 12458       |
| 2    | 4.768   | 721977      | 1.27               | 12460       |
| 3    | 4.768   | 721691      | 1.26               | 12461       |
| 4    | 4.780   | 717938      | 1.31               | 12699       |
| 5    | 4.783   | 722739      | 1.28               | 12639       |
| 6    | 4.782   | 725180      | 1.35               | 12368       |
|      |         | Mean=721997 |                    |             |
|      |         | %RSD=0.325  |                    |             |

## **Observation:**

From the system precisions studies it is observed that all the parameters like %RSD of retention time and peak areas are within limits

#### 2. Method Precision: (Reproducibility)

Six individual preparations of Reserpine, Dihydralzinesulphate and Hydrochlorothiazide drug substance were prepared with a target concentration of aboutReserpine-0.10ppm, Dihydralazinesulphate-10.01ppm, Hydrochlorothiazide -10.01ppm.

| S No. | RT(min) | Area                       | USP Plate<br>count | USP tailing |
|-------|---------|----------------------------|--------------------|-------------|
| 1     | 7.997   | 1251130                    | 12186              | 1.43        |
| 2     | 7.996   | 1249896                    | 13082              | 1.38        |
| 3     | 7.841   | 1257277                    | 12885              | 1.29        |
| 4     | 7.880   | 1256499                    | 8159               | 1.25        |
| 5     | 7.879   | 1253805                    | 9307               | 1.24        |
| 6     | 7.993   | 1259187                    | 11186              | 1.22        |
|       |         | Mean=1254632<br>%RSD=0.291 |                    |             |

## Table-10: Method precision values of Reserpine by HPLC

#### Table 11:Method precision values of Dihydralazine sulphate by HPLC

| S.No | RT(min) | Area        | USP Plate<br>count | USP tailing |
|------|---------|-------------|--------------------|-------------|
| 1    | 2.632   | 881948      | 1382               | 2.03        |
| 2    | 2.608   | 887765      | 1332               | 2.04        |
| 3    | 2.561   | 888735      | 1556               | 2.14        |
| 4    | 2.570   | 884041      | 1640               | 1.97        |
| 5    | 2.563   | 884706      | 1575               | 2.00        |
| 6    | 2.600   | 889287      | 1587               | 1.86        |
|      |         | Mean=886080 |                    |             |
|      |         | %RSD=0.332  |                    |             |

## Table-12: Method precision values of Hydrochlorthiazide by HPLC

| S No. | RT(min) | Area                      | USP Plate<br>count | USP tailing |
|-------|---------|---------------------------|--------------------|-------------|
| 1     | 4.488   | 657740                    | 7624               | 1.26        |
| 2     | 4.468   | 656693                    | 8032               | 1.22        |
| 3     | 4.398   | 658616                    | 8536               | 1.42        |
| 4     | 4.416   | 650171                    | 8981               | 1.10        |
| 5     | 4.410   | 652877                    | 8795               | 1.21        |
| 6     | 4.481   | 650771                    | 8229               | 1.14        |
|       |         | Mean=654478<br>%RSD=0.561 |                    |             |

## **Observation:**

From the system precisions studies it is observed that all the parameters like %RSD of retention time and peak areas are within limits.

## 3. Intermediate precision (inter day):

Six sample solutions are prepared and injected on the next day into the HPLC system as per test procedure. The observations of Intermediate precision were given in below tables.

| S No. | RT(min) | Area         | USP Plate count | USP tailing |
|-------|---------|--------------|-----------------|-------------|
| 1     | 7.997   | 1174223      | 12591           | 1.32        |
| 2     | 7.966   | 1170958      | 13437           | 1.20        |
| 3     | 7.840   | 1174927      | 13470           | 1.35        |
| 4     | 7.880   | 1173702      | 8407            | 1.36        |
| 5     | 7.879   | 1173247      | 9540            | 1.40        |
| 6     | 7.993   | 1176831      | 11580           | 1.31        |
|       |         | Mean=1173981 |                 |             |
|       |         | %RSD=0.165   |                 |             |

|  | Table-1 | 13 : | Intermediate | precision | values | of R | eserpine b | oy HPLC |
|--|---------|------|--------------|-----------|--------|------|------------|---------|
|--|---------|------|--------------|-----------|--------|------|------------|---------|

| S No. | RT(min) | Area        | <b>USP Plate count</b> | USP tailing |
|-------|---------|-------------|------------------------|-------------|
| 1     | 2.632   | 856265      | 1422                   | 1.96        |
| 2     | 2.608   | 852690      | 1404                   | 1.93        |
| 3     | 2.561   | 855679      | 1610                   | 2.00        |
| 4     | 2.570   | 852640      | 1699                   | 1.89        |
| 5     | 2.563   | 857930      | 1612                   | 1.93        |
| 6     | 2.600   | 845972      | 1669                   | 1.76        |
|       |         | Mean=853529 |                        |             |
|       |         | %RSD=0.497  |                        |             |

## Table-15:Intermediate precision values of Hydrochlorthiazide by HPLC

| S No. | RT    | Area        | <b>USP Plate count</b> | USP tailing |
|-------|-------|-------------|------------------------|-------------|
| 1     | 4.488 | 657740      | 7624                   | 1.26        |
| 2     | 4.468 | 656693      | 8032                   | 1.22        |
| 3     | 4.398 | 653471      | 8476                   | 1.21        |
| 4     | 4.416 | 660442      | 8849                   | 1.27        |
| 5     | 4.410 | 652877      | 8795                   | 1.21        |
| 6     | 4.481 | 650771      | 8229                   | 1.14        |
|       |       | Mean=655332 |                        |             |
|       |       | %RSD=0.546  |                        |             |



Figure8:Representative chromatogram of Intermediate precision

## **Observation:**

From the system precisions studies it is observed that all parameters like %RSD of retention time and peak areas are within limits.

## **Robustness:**

Robustness of the proposed analytical method is a measure of its capacity to remain unaffected, and it reflects the reliability of the analysts with respect to deliberate changes in the parameters such as flow rate, column temperature, mobile phase ratio, wave length etc.

## 1. Effect of variation of organic phase:

A study is conducted to determine the effect of variation in mobile phase ratio by changing the ratio of acetonitrile :buffer from 75:25% v/v to 70:30% v/v and 65:35% v/v by preparing standard solution and injecting in to HPLC system. The readings of variation of organic phase were given in below tables.

| S.NO | Composition             | Retention   | Peak    | Theoretical | Tailing |
|------|-------------------------|-------------|---------|-------------|---------|
|      | ( <b>v</b> / <b>v</b> ) | time (min ) | area    | plates      | factor  |
| 1    | 75:25                   | 7.839       | 1219381 | 10940       | 1.42    |
| 2    | 75:25                   | 7.764       | 1229456 | 13695       | 1.20    |
| %RSD |                         |             | 0.644   |             |         |
| 1    | 70:30                   | 7.880       | 1256499 | 8159        | 1.25    |
| 2    | 70:30                   | 7.879       | 1253805 | 9307        | 1.24    |
| %RSD |                         |             | 0.291   |             |         |
| 1    | 65:35                   | 6.302       | 1061371 | 9162        | 1.40    |
| 2    | 65:35                   | 6.366       | 1058660 | 10540       | 1.04    |
| %RSD |                         |             | 0.503   |             |         |

Table 16 : Effect of variation of organic phase of Reserpine

#### Table -17 :Effect of variation of organic Phase of Dihydaralazine sulphate

| S.NO | Composition             | Retention | Peak area | Theoretical | Tailing |
|------|-------------------------|-----------|-----------|-------------|---------|
|      | ( <b>v</b> / <b>v</b> ) | time(min) |           | plates      | factor  |
| 1    | 75:25                   | 2.551     | 783560    | 1704        | 1.93    |
| 2    | 75:25                   | 2.507     | 784686    | 2099        | 1.75    |
| %RSD |                         |           | 0.244     |             |         |
| 1    | 70:30                   | 2.570     | 884041    | 1640        | 1.97    |
| 2    | 70:30                   | 2.563     | 884706    | 1575        | 2.00    |
| %RSD |                         |           | 0.332     |             |         |
| 1    | 65:35                   | 2.205     | 779773    | 1128        | 2.88    |
| 2    | 65:35                   | 2.019     | 775669    | 1287        | 1.80    |
| %RSD |                         |           | 0.837     |             |         |

#### Table 18: Effect of variation of organic Phase of Hydrochlorthiazide

| S.NO | Composition             | Retention | Peak area | Theoretical | Tailing |
|------|-------------------------|-----------|-----------|-------------|---------|
|      | ( <b>v</b> / <b>v</b> ) | time(min) |           | plates      | factor  |
| 1    | 75:25                   | 4.412     | 674568    | 8873        | 1.34    |
| 2    | 75:25                   | 4.371     | 674848    | 11361       | 0.98    |
| %RSD |                         |           | 0.336     |             |         |
| 1    | 70:30                   | 4.416     | 650171    | 8981        | 1.10    |
| 2    | 70:30                   | 4.410     | 652877    | 8795        | 1.21    |
| %RSD |                         |           | 0.561     |             |         |
| 1    | 65:35                   | 3.496     | 628546    | 7080        | 1.69    |
| 2    | 65:35                   | 3.526     | 628551    | 7945        | 1.26    |
| %RSD |                         |           | 0.130     |             |         |

## Wavelength:

A study is conducted to determine the effect of variation in wave length by preparing standard solutions and injecting in to HPLC system.

| S.NO | Wave length (nm) | Retention<br>time(min) | Peak area | Theoretical plates | Tailing<br>factor |
|------|------------------|------------------------|-----------|--------------------|-------------------|
| 1    | 235              | 8.444                  | 203447    | 8455               | 1.24              |
| 2    | 235              | 8.281                  | 202935    | 7320               | 1.28              |
| %RSD |                  |                        | 0.776     |                    |                   |
| 1    | 240              | 7.997                  | 1251130   | 12186              | 1.43              |
| 2    | 240              | 7.966                  | 1249896   | 13082              | 1.38              |
| %RSD |                  |                        | 0.291     |                    |                   |
| 1    | 245              | 8.445                  | 290645    | 8248               | 1.33              |
| 2    | 245              | 8.281                  | 287971    | 7093               | 1.39              |
| %RSD |                  |                        | 0.894     |                    |                   |

## Table-19 : Effect of wave length on Reserpine

## Table-20: Effect of wave length on Dihydralazine sulphate

| S.NO | Wave length | Retention | Peak area | Theoretical | Tailing  |
|------|-------------|-----------|-----------|-------------|----------|
|      |             | time(min) |           | plates      | factor   |
| 1    | 235         | 2.206     | 1953904   | 1247        | 1.39     |
| 2    | 235         | 2.208     | 1954734   | 1086        | 1.28     |
| %RSD |             |           | 0.047     |             |          |
| 1    | 240         | 2.632     | 881948    | 1382        | 2.03     |
| 2    | 240         | 2.608     | 887765    | 1332        | 2.04     |
| %RSD |             |           | 0.332     |             |          |
| 1    | 245         | 2.206     | 347779    | 1155        | 1.451.10 |
| 2    | 245         | 2.226     | 337584    | 1131        |          |
| %RSD |             |           | 0.726     |             |          |

# Table- 21: Effect of wave length on Hydrochlorthiazide

| S.NO | Wave length | Retention | Peak area | Theoretical | Tailing |
|------|-------------|-----------|-----------|-------------|---------|
|      |             | time(min) |           | plates      | factor  |
| 1    | 235         | 4.779     | 751783    | 12517       | 1.20    |
| 2    | 235         | 4.726     | 760273    | 10707       | 1.24    |
| %RSD |             |           | 0.579     |             |         |
| 1    | 240         | 4.488     | 657740    | 7624        | 1.26    |
| 2    | 240         | 4.468     | 656693    | 8032        | 1.22    |
| %RSD |             |           | 0.561     |             |         |
| 1    | 245         | 4.779     | 649776    | 12208       | 1.29    |
| 2    | 245         | 4.726     | 639345    | 10589       | 1.26    |
| %RSD |             |           | 1.216     |             |         |

## **Effect of variation of Flow rate:**

A standard solution was prepared and injected in to the HPLC system by keeping fow rates 0.8 mL/min and 1.2 mL/min , the effect is evaluated.

| S.NO | Flow         | Retention  | Peak area | Theoretical | Tailing |
|------|--------------|------------|-----------|-------------|---------|
|      | rate(ml/min) | time (min) |           | plates      | factor  |
| 1    | 0.8          | 7.839      | 1228413   | 10906       | 1.45    |
| 2    | 0.8          | 7.764      | 1229456   | 13695       | 1.20    |
| %RSD |              |            | 0.066     |             |         |
| 1    | 1.0          | 7.997      | 1251130   | 12186       | 1.43    |
| 2    | 1.0          | 7.996      | 1249896   | 13082       | 1.38    |
| %RSD |              |            | 0.291     |             |         |
| 1    | 1.2          | 6.302      | 886631    | 10233       | 1.06    |
| 2    | 1.2          | 6.366      | 871836    | 12280       | 1.17    |
| %RSD |              |            | 1.764     |             |         |

Table-22 : Effect of variation of flow rate of Reserpine

## Table-23 : Effect of variation of flow rate of Dihydralazine sulphate

| S.NO | Flow rate | Retention | Peak area | Theoretical | Tailing |
|------|-----------|-----------|-----------|-------------|---------|
|      | (mL/min)  | time(min) |           | plates      | factor  |
| 1    | 0.8       | 2.551     | 817648    | 1661        | 2.04    |
| 2    | 0.8       | 2.507     | 819318    | 1987        | 1.84    |
| %RSD |           |           | 0.540     |             |         |
| 1    | 1.0       | 2.632     | 881948    | 1382        | 2.03    |
| 2    | 1.0       | 2.608     | 887765    | 1332        | 2.04    |
| %RSD |           |           | 0.332     |             |         |
| 1    | 1.2       | 2.205     | 669349    | 1247        | 1.90    |
| 2    | 1.2       | 2.019     | 660611    | 1459        | 1.91    |
| %RSD |           |           | 0.721     |             |         |

## Table-24 : Effect of variation of flow rate of Hydrochlorthiazide

| S.No | Flow         | Retention  | Peak area | Theoretical | Tailing |
|------|--------------|------------|-----------|-------------|---------|
|      | rate(ml/min) | time (min) |           | plates      | factor  |
| 1    | 0.8          | 4.412      | 719430    | 8721        | 1.53    |
| 2    | 0.8          | 4.371      | 723822    | 10516       | 1.17    |
| %RSD |              |            | 0.344     |             |         |
| 1    | 1.0          | 4.488      | 657740    | 7624        | 1.26    |
| 2    | 1.0          | 4.468      | 656693    | 8032        | 1.22    |
| %RSD |              |            | 0.561     |             |         |
| 1    | 1.2          | 3.496      | 511345    | 7805        | 1.20    |
| 2    | 1.2          | 3.526      | 512276    | 9430        | 1.16    |
| %RSD |              |            | 0.524     |             |         |

## Limit of detection(LOD) & Limit of quantitation(LOQ):

LOD & LOQ were calculated on the peak area using the following equations.

## LOD : 3.3α/S LOQ : 10 α/S

## Table-25 :Limit of detection and limit of quantitation

| S.NO | Sample                 | LOD    | LOQ     |
|------|------------------------|--------|---------|
| 1    | Reserpine              | 0.047  | 0.144   |
| 2    | Dihydralazine sulphate | 0.0305 | 0.10179 |
| 3    | Hydrochlorothiazide    | 0.065  | 0.219   |

## Stability studies:

The solution stability of Reserpine ,Dihydralazine sulphate, and Hydrochlorothiazide diluents were determined by storing sample solutions in a tightly closed volumetric flask at room temperaturefor 24 hrs. The amount of Reserpine, Dihydralazine sulphate, and Hydrochlorothiazide were measured at different time intervals like intial, 12 and 24 hrs and results obtained were compared with freshly prepared Reserpine, Dihydralazine sulphate, Hydrochlorothiazide solutions.

 Table 26 : Solution Stability studies for Reserpine

| Stability | Sample<br>weight(mg) | Area counts | %label<br>claim | %deviation |
|-----------|----------------------|-------------|-----------------|------------|
| Intial    | 685.5                | 258087      | 100.1           | 0.0        |
| 12hrs     | 675.5                | 250632      | 100.2           | -0.4       |
| 24hrs     | 680.5                | 248508      | 100.0           | 0.6        |

## Table 27: Solution stability studies for Dihydralazine sulphate

| Stability | Sample<br>weight(mg) | Area counts | %label<br>claim | %deviation |
|-----------|----------------------|-------------|-----------------|------------|
| Intial    | 662.8                | 888258      | 100.5           | 0.00       |
| 12hrs     | 654.4                | 875345      | 100.3           | 0.1        |
| 24hrs     | 656.6                | 876517      | 100.1           | 0.4        |

#### Table-28: solution stability of Hydrochlorthiazide

| Stability | Sample     | Area counts | %label | %deviation |
|-----------|------------|-------------|--------|------------|
|           | weight(mg) |             | claim  |            |
| Intial    | 685.5      | 712924      | 99.9   | 0.00       |
| 12hrs     | 675.5      | 705325      | 100.3  | -0.5       |
| 24hrs     | 680.5      | 707856      | 99.9   | 0.5        |

## Forced degradation studies:

Regulatory guidance in ICH Q2A, Q2B, Q3B and FDA 21 CFR section 211 requires the development and validation of stability indicating potency assays.

### Preparation of working standard solution :

About 0.1 mg of Reserpine, 10 mg of Dihydralazine sulphate and 10mg of Hydrochlorothiazide pure drugs were accurately weighed and transferred to 50 ml volumetric flask and made up to the mark with diluent.

Table 29: Results of forced degradation studies of Reserpine

| S.NO | Sress<br>conditions | R <sub>t</sub> (min) | Peak<br>area | Plate<br>count | USP<br>tailin<br>g | %<br>degraded | Purity<br>angle | Purity<br>threshold |
|------|---------------------|----------------------|--------------|----------------|--------------------|---------------|-----------------|---------------------|
| 1    | Control             | 8.444                | 261022       | 8230           | 1.33               | -0.4          | 1.149           | 8.48                |
| 2    | Acid                | 8.444                | 207899       | 9619           | 1.23               | 21.6          | 0.604           | 8.191               |
| 3    | Alkali              | 8.407                | 220875       | 9323           | 1.23               | 21.1          | 0.618           | 8.066               |
| 4    | Peroxide            | 8.444                | 216716       | 9295           | 1.26               | 21.9          | 0.646           | 8.207               |
| 5    | Reduction           | 8.199                | 206614       | 9878           | 1.23               | 24.1          | 3.061           | 10.359              |
| 6    | Thermal             | 8.338                | 172898       | 8617           | 0.92               | 23.3          | 1.349           | 9.714               |
| 7    | Photo               | 8.407                | 216904       | 9449           | 1.20               | 21.2          | 0.609           | 8.058               |
| 8    | Humidity            | 8.199                | 207094       | 9772           | 1.23               | 24.8          | 3.163           | 10.368              |
| 9    | Hydrolysis          | 8.389                | 210405       | 7411           | 1.19               | 24.1          | 1.294           | 9.635               |
| 10   | Heat                | 8.407                | 223792       | 9246           | 1.16               | 25.6          | 0.612           | 8.053               |

| S. | Stress     | Dt(min)   | Peak   | Plate | USP     | %        | Purity | Purity    |
|----|------------|-----------|--------|-------|---------|----------|--------|-----------|
| N0 | conditions | Kt(IIIII) | area   | count | Tailing | degraded | angle  | Threshold |
| 1  | CONTROL    | 2.206     | 893881 | 1219  | 1.42    | -0.2     | 1.335  | 7.195     |
| 2  | ACID       | 2.206     | 843886 | 1256  | 1.41    | 20.7     | 1.287  | 7.153     |
| 3  | ALKALI     | 2.235     | 889208 | 1243  | 1.44    | 21.1     | 0.941  | 7.08      |
| 4  | PEROXIDE   | 2.206     | 804869 | 1295  | 1.44    | 28.8     | 1.266  | 7.148     |
| 5  | REDUCTION  | 2.206     | 840477 | 1457  | 1.26    | 25.6     | 1.504  | 7.376     |
| 6  | THERMAL    | 2.195     | 796963 | 1134  | 1.25    | 23.7     | 0.596  | 7.335     |
| 7  | РНОТО      | 2.235     | 782835 | 1383  | 1.32    | 23.1     | 0.828  | 7.074     |
| 8  | HUMIDITY   | 2.206     | 848579 | 1447  | 1.29    | 20.2     | 1.517  | 7.383     |
| 9  | HYDROLYSIS | 2.195     | 836535 | 1099  | 1.24    | 20.3     | 0.595  | 7.358     |
| 10 | HEAT       | 2.235     | 899523 | 1234  | 1.43    | 20.4     | 0.942  | 7.081     |

 Table 30: Results of Forced degradation of Dihydralazine sulphate

| Table 31: | Results of  | Forced ( | degradation | of Hydi | ochlorof | hiazide |
|-----------|-------------|----------|-------------|---------|----------|---------|
| Table 31. | incounts of | rorccu   | ucgrauation | or myu  | ocmoi ot | maziuc  |

| S.<br>N<br>0 | Stress<br>conditions | Rt(min) | Peak<br>area | Plate<br>count | USP<br>Tailin<br>g | %<br>degraded | Purity<br>angle | Purity<br>Threshold |
|--------------|----------------------|---------|--------------|----------------|--------------------|---------------|-----------------|---------------------|
| 1            | CONTROL              | 4.779   | 719090       | 12218          | 1.29               | -0.4          | 0.122           | 7.194               |
| 2            | ACID                 | 4.779   | 687746       | 12467          | 1.23               | 20.1          | 0.073           | 7.13                |
| 3            | ALKALI               | 4.768   | 670405       | 12992          | 1.27               | 20.9          | 0.085           | 7.123               |
| 4            | PEROXIDE             | 4.779   | 701995       | 12332          | 1.25               | 22.1          | 0.082           | 7.14                |
| 5            | REDUCTION            | 4.703   | 645133       | 12995          | 1.23               | 24.1          | 0.081           | 7.191               |
| 6            | THERMAL              | 4.765   | 584310       | 11435          | 1.08               | 25.6          | 0.083           | 7.204               |
| 7            | РНОТО                | 4.768   | 666998       | 13025          | 1.25               | 21.7          | 0.084           | 7.119               |
| 8            | HUMIDITY             | 4.703   | 676315       | 12590          | 1.25               | 21.4          | 0.091           | 7.205               |
| 9            | HYDROLYSIS           | 4.765   | 678971       | 10314          | 1.19               | 20.2          | 0.122           | 7.245               |
| 1<br>0       | HEAT                 | 4.768   | 694992       | 12671          | 1.23               | 20.5          | 0.086           | 7.123               |

# **Results & Discusions :**

# Table 32: System suitability parameters:

| Parameter                                        | Acceptance<br>criteria                     | Observed<br>values for<br>Reserpine | Observed values<br>for Dihydralazine<br>sulphate | Observed values for<br>Hydrochlorothiazide |
|--------------------------------------------------|--------------------------------------------|-------------------------------------|--------------------------------------------------|--------------------------------------------|
| Linearity<br>range<br>Correlation<br>coefficient | Correlation<br>coefficient<br>$r^2$ >0.999 | r <sup>2</sup> =0.999               | r <sup>2</sup> =0.999                            | r <sup>2</sup> =0.999                      |
| System<br>precision                              | RSD<2%                                     | %RSD=0.603                          | %RSD=0.311                                       | %RSD=0.325                                 |
| Intermediate precision                           | RSD<2%                                     | %RSD=0.165                          | %RSD=0.497                                       | %RSD=0546                                  |
| Method<br>precision                              | RSD<2%                                     | %RSD=0.291                          | %RSD=0.332                                       | %RSD=0.561                                 |
| Accuracy                                         | Recovery 98-<br>102%(individual)           | %recovery<br>=100.3                 | %recovery=100.6                                  | %recovery =100.2                           |
| Solution<br>stability                            | >12hrs                                     | Stable up to 24hrs                  | Stable up to 24 hrs<br>%RSD=0.325                | Stable up to24hrs                          |

|            |                  | %RSD =0.646 |             | %RSD=0.271 |
|------------|------------------|-------------|-------------|------------|
| Robustness | RSD NMT 2% in    | Complies    | Complies    | Complies   |
|            | modified         |             |             |            |
|            | condition        |             |             |            |
|            | Flow minus       | %RSD=0.066  | %RSD=0.540  | %RSD=0.344 |
|            | Flow plus        | %RSD=1.764  | %RSD=0.721  | %RSD=0.524 |
|            | Organic plus     | %RSD=0.503  | %RSD=0.837  | %RSD=0.130 |
|            | Organic minus    | %RSD=0.644  | %RSD=0.1244 | %RSD=0.336 |
|            | Wavelength plus  | %RSD=0.894  | %RSD=1.726  | %RSD=1.216 |
|            | Wavelength minus | %RSD=0.776  | %RSD=0.047  | %RSD=0.579 |

## **Conclusion**:

In the present investigation new analytical method has been developed for the simultaneous estimation of potent drugs Reserpine, Dihydralazine sulphate, Hydrochlorothiazide . There is no analytical method available to determine the same combination of drugs. So we have selected and developed a new analytical method for the routine analysis of Reserpine, Dihydralazine sulphate and Hydrochlorothiazide in bulk and combined dosage forms according to ICH guidelines.

## Acknowledgement:

I express my sincere thanks to Dr.k.Santhakumari, Dr.SK. Abdul Rahaman and Managment of Nirmala college of pharmacy for encouragement throughout my research work. And also thankful to ICON labs Vijayawada for providing the Reserpine, Dihydralazine sulphate, Hydrochlorothiazide pure drugs.

#### **References** :

- 1. https://en.wikipedia.org/wiki/Combination\_therapy
- 2. https://www.ndrugs.com/?s=reserpine/dihydralazine%20sulfate/hydrochlorothiazide.
- 3. https://www.belmarrahealth.com > Heart Health.
- 4. https://en.wikipedia.org/wiki/Hydrochlorothiazide.
- 5. Indolealkaloids..Major Types Of Chemical Compounds In Plants & Animals Part II: Phenolic Compounds, Glycosides & Alkaloids. Wayne's Word: An On-Line Textbook of Natural History. 2005.
- 6. https://www.sigmaaldrich.com/catalog/product/sigma/d2697?lang=en&region
- 7. H.H.Willard,L.L.Merritt, J.A.Dean,F.A.Settle. Instrumental methods of analysis, 7<sup>th</sup> Edition, New delhi: CBS Publishers; 1986, pg no:2-3,580-613.
- 8. Phyllis R.Brown, Kingston, Rhode Island, HPLC and CE-principles and practice, pg no:24-31
- 9. Sharma B.K. Chromatography. 23<sup>rd</sup>ed. Meerut :Goel publishing house, 2004, pg no: 288-302
- 10. James Swabrik. Encyclopedia of pharmaceutical technology, 3<sup>rd</sup>edition, vol-I. 2007,pg no :526-537.
- 11. Sethi . P.D, HPLC , Quantitative analysis of pharmaceutical formulations . I<sup>st</sup>ed, vol-I. New Delhi : CBS publishers and distributors ;2001. Pgno :3-72, 94-95, 116-120.
- 12. Snyder L.R, Kirkland JJ, Glajch JL. Practical HPLC method development. 2<sup>nd</sup> ed. Wiley inter science publication; 1997, pg no: 1-13, 687-705.
- 13. Indian pharmacopoeia , vol-3, pharmacopoeia commission, Ministry of Health &family welfare, Ghaziabad, India, 6<sup>th</sup> Edition, 2010.
- 14. Napa. Delhiraj<sup>\*</sup>, Sockalingam. Anbazhagan validated liquid chromatographic method for the estimation of anti hypertensive mixture in pharmaceutical dosage forms world journal of pharmacy and pharmaceytical sciences volume 3, Issue 6, 1916-1927.
- 15. Sarojkumarraul<sup>\*</sup>, B.V.V Ravi kumar, Ajay kumarPattnaik, Nagi Reddy Neelakantarao. RP-HPLC method development and validation for the estimation of Dihydralazine in bulk and pharmaceutical dosage forms. Int j pharm 2013; 3 (1): 116-121.
- 16. Anandarao Bonthala<sup>\*</sup>, and T.A.D. Surya kumar. Development and validation of RP-HPLC method for the estimation of Hydrochlorothiazide and Candesartan cilexetil in pharmaceutical dosage form. Int j pharm 2013;3(1):166-169.

- 17. Mukhopadhyay S<sup>\*</sup>, Kadam K, Sawat L, Nachane D, Pandita N, simultaneous determination of related substances of Telmisartan and Hydrochlorothiazide in tablet dosage form by using RP-HPLC method . J pharmaBioallied sci. 2011jul; 3(3) :375-83.
- 18. Hfez HM<sup>\*</sup>,Elshanawane AA, Abdelaziz LM, Kamal MM, quantitative determination of three angiotensin –II receptor antagonist in the presence of Hydrochlorothiazide by RP-HPLC in their tablet preparatios. Iran J pharma Res.2013.
- 19. Meyyanathan SN<sup>1</sup>, Rajan S, Muralidharan S, Birajdhar AS, B A validated RP-HPLC Method for simultaneous estimation of Nebivolol and Hydrochlorthiazide in tablets. Indian J pharm sci.- 2008 sep, 70 (5): 687-9.
- 20. Jain PS<sup>1</sup>, Patel MK, Gorle AP, Chaudhari AJ, Surana SJ stability indicating method for simultaneous estimation of olmisartanmedoxamil, amlodipine besylate and hydrochlorthiazide by RP-HPLC in tablet dosage form. J Chromatography sci. 2012 sep ; 50 (8): 680-7.
- 21. Patel HU<sup>1</sup>, Suhagia BN, Patel CN. Simultaneous analysis of Eposartan and hydrochlorthiazide in tablets by HPLC.Pharm methods.2011 Apr; 2(2)143-7.
- 22. Dr.Ravisankar, Text book of pharmaceutical analysis, 2010; 4<sup>th</sup> edition:1-18.
- 23. Skoog, D.A., Holler, F,J. and nieman, T.A.:principles of instrumental analysis, 2004; 4<sup>th</sup> edition: 724.
- 24. David G. Watson, pharmaceutical analysis, 2005; 3<sup>rd</sup> EDITION;268.
- 25. ICH Guidelines, Q2R1 Validation of analytical procedures ; Text and methodology , ICH, Geniva , Switzerland, 2005.
- 26. http://www. Webmed.com/drugs/2/drug-148989/levocetrizine-oral/details.
- 27. http://en.wikipedia.org/wiki/reserpine.
- 28. http://www.drugbank.ca/drugs/DB00388.
- 29. http://www..drugs.com/ingredient/dihydralazine sulphate.html
- 30. https://www.ndrugs.com/?s=reserpine/dihydralazine%20sulfate/hydrochlorothiazide

\*\*\*\*