

International Journal of ChemTech Research

CODEN(USA): IJCRGG, ISSN: 0974-4290,

ISSN(Online):2455-9555 Vol.10 No.7, pp 494-500,2017

ChemTech

Conducting PolymerPolyanilineas CO₂ gas sensor

^{*1}Mude K.M.,²Mude B.M.,³Raulkar. K. B,⁴Yawale S.S.,⁵Yawale S.P.

¹Department of Physics, Bhavan's College, Andheri (W) -400058, India ²Department of Physics, RamnarainRuia College, Matunga (E) -400019, India ³Department of Physics, VidyaBharatiMahavidyalaya, Amravati- 444 602, India ^{4,5}Department of Physics, Government Vidarbha Institute of Science & Humanities, Amravati-444 604, India

Abstract:The gas sensitivity response of nano-metal oxide (ZnO) doped composites (ZnO/PANI) was studied. The chemicals used for the preparation of gas sensor were first calcinated at 800°C for 5 h. Composites of ZnO/PANI were prepared and multilayer sensor was developed using screen printing technique with Al_2O_3 as substrate on glass plate. The composites of ZnO and PANI were characterized by FTIR and XRD. The sensitivity was measured by measuring the electrical resistance in presence of CO₂ gas which was found to be more for ZnO/PANI/Al₂O₃ multilayer sensor. It was found that response of multilayer sensor increases with increase in ppm concentration of CO₂ gas. The entire phenomenon is discussed on the basis of gas adsorption on the surface of the sensor which arises due to charge transfer.

Keywords:ZnO; screen-printing technique; CO₂ gas sensor, sensitivity.

Mude K.M. et al/International Journal of ChemTech Research, 2017,10(7): 494-500.
