

International Journal of ChemTech Research

CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.7, pp 461-476, **2017**

ChemTech

An Experimental Study on Mechanical Properties of Conventional Concrete Low Calcium Fly Ash Blended Concrete Incorporation with Natural Admixture

T.S. Ramesh Babu¹* and D. Neeraja²

¹Wachemo University, Hosaena, Ethiopia. ²School of Civil and Chemical Engineering, Vellore Institute Of Technology, Vellore – 632 014, Tamilnadu, India.

Abstract : This research work reveled that effect of Natural admixture (NAD) on Conventional Concrete (CC) and low calcium fly ash (Class F Fly Ash) blended concrete.Broiler hen egg white albumen and yellow yolk was used as Natural Admixture. Cement was replaced by Class F fly ash at various levels of 0% to 45% by its mass and NAD was added to concrete at different replacement dosages of 0%, 0.25%, 0.5%, 0.75% and 1.00% by its volume to water content and liquid to binder ratio was maintained at 0.5. For all replacement levels of FA and NAD, the mechaincal properites viz unit weight, compressive strength, splitting tensile strength and modulus of elasticity of CC and Class F fly ash (FA) were studied at 7, 28, 56 and 112 days. From the results, it was concluded that 0.25% of NAD dosage was considered as optimum dosage for both CC and Class F fly ash blended concrete. The studies reveled that 35% Class F fly ash blended concrete mix is concluded as optimum mix.

Keywords : Natural Admixture; Class F fly ash, Unit weight, Compressive Strength, Splitting tensile strength and Modulus of Elasticity.

1. Introduction

The rapid development of construction industry lead to hug utilization of cement, this leads to emission of green house gas (CO_2) into environement and that causes the global warming. To reduce the emission of CO_2 , the supplementray cementious material were introduced and vast investigation are going on over the those materials. The most of the research was concluded that the 25% fly ash can be replaced to cement the get the designed strength, that reduce few percentage of CO_2 . So that there is necesity again reduce utilization of cement again by increasing the supplementary and pozzolanic materials by adding additives or admixtures.

Ravina Dan and Mehta [1]was concluded that 40 to 50% Class F or Class C fly ashes can be replaced to cement, but it requires 180 days of curing. They were proposed the high volume fly ash concrete by replacement level greather than 50% to cement. But practically curing of concrete for 180 days is not possible. So that the curing period has to reduce, and there by mix should get design strength with in 28 days curing period by adding accelerators to enchance the hydration and pozzolanic action. Ramesh Babu and Neeraja [2] have concluded that the Natural Admixture (NAD) is acting as acclerator when it added to binder at optimum

dosage. Malhotra and Painter [3] concluded that high volume Class F fly ash concrete having high resistance to freezing and thawing effect.

This research is focused on study of mechanical properities viz unit weight, compressive strength, splitting tensile strength and modulus of elasticity of Conventional Concrete (CC) and Class F fly ash blended concrete incorpation with Natural Admixture, the fig 1 shows the graphical presentation of work. And also identify optimum mix to get higer strength and economical mix which gives the designed strength with less cement content and high volume Class F fly ash.

2. Literature Review

HanifiBinici et al. [4] reported that replacement of egg shell powder in sand that leads to reduction in the compressive strength and flexural strength of cement mortar. But it has high resistance to radiation effect.

Ramesh Babu and Neeraja [2] revealed that when NAD added to binder, it acts as accelerator. The optimum dosage of NAD was determined by the fresh properties of binder and compressive strength CC and Class C fly ash concrete and concluded as 0.25% NAD replacement dosage as optimum dosage for CC and Class C fly ash blended concrete. Due to high viscous nature of NAD and rapid setting of concrete and the workability of concrete was decreased. Ramesh Babu et al [5] reported that the mechanical properties of CC and Class C fly ash blended concrete will increases at optimum dosage 0.25% NAD replacement. But 25% replacement of Class C fly ash with optimum dosage had attained M25 designed strength with optimum NAD dosage, and there after decreasing of compressive strength was observed with increasing FA. They were concluded that maximum replacement of Class C fly ash was 25%.

3. Experimental Study

3.1 Materials

The aim of this research is to study the effect of NAD on mechanical properties of CC and low calcium fly ash (Class F fly ash) blended concrete. The Class F fly ash (FA) was replaced to cement by its weight at various replacement levels of 0%, 25%, 35% and45%.NAD was replaced to water at various dosages levels of 0%, 0.25%, 0.50%, 0.75% and 1.00% to the weight of cementitious material, by maintaining the liquid to binder ratio at 0.5. The mechanical properties viz unit weight, compressive strength, splitting tensile strength and modulus of elasticity of convention concrete (CC) and Class F fly ash (FA) blended concrete were determined. The optimum replacement level of Class F fly ash and NAD to get high strength was determined.

3. 2. Material properties

This section describes the proprieties of ingredients used in this study as per Bureau of Indian Standards (BIS) and American Society for Testing and Materials (ASTM)

3.2.1 Cement

Ultra tech 53 grade ordinary Portland cement was used corresponding to IS 12269:1987 [6]. The chemical and physical properties of cement are shown in Tables 1 and 2.

Particulars	Test result	Requirement as per IS:12269-1987
Chemical composition		
% Silica (SiO ₂)	19.29	
% Alumina (Al ₂ O ₃)	5.75	
% Iron oxide (Fe ₂ O ₃)	4.78	
% Lime (CaO)	62.81	
% Magnesia (MgO)	0.84	Not more than 6.0%
% Sulphuric anhydride (SO ₃)	2.48	Max. 3.0% when C3A>5.0

Table 1: Chemical properties of cement

		Max. 2.5% when C3A<5.0
% Chloride content	0.003	Max. 0.1%
Lime saturation factor CaO	0.02	0.90 (- 1.02
0.7SO3/2.8SiO2+1.2Al2O3+0.65Fe2O3	0.92	0.80 to 1.02
Ratio of Alumina/Iron Oxide	1.21	Min. 0.66

Table 2: Physical properties of cement

Particulars	Test result	Requirement as per IS:12269-1987
Physical properties		
Specific gravity	3.15	
Fineness (m ² /kg)	315.4	Min. 225 m ² /kg
Soundness		
Lechatlier expansion (mm)	0.8	Max. 10mm
Auto Clave expansion (%)	0.01	Max. 0.08%
Setting time (Minutes)		
Initial	45	Min 30 mints
Final	230	Max. 600 mints

3.2.2 Natural admixture

Broiler hen egg was used as Natural admixture (NAD), both egg white albumen and yellow yolk was throughly mixed and added to concrete. The NAD was replaced to water as 0%, 0.25%, 0.5%, 0.75% and 1.00% of cementitious material weight by maintaining the liquid to binder ratio (0.5).

3.2.3 Mineral admixture

Class F fly ash (FA) was used as an additive according to ASTM Class F 618. Table 3 shows the properties of class F fly ash.

Table 3: Properties of Class F fly ash

Physical properties	Test results
Specific gravity	2.13
pH	11.52
Moisture content	0.80%
Chemical properties	
Element	Weight %
CaO	5.98
SiO ₂	62.00
Al ₂ O ₃	18.90
Fe ₂ O ₃	4.90
MgO	1.99
Na ₂ O	2.47
K ₂ O	1.14
TiO ₂	1.09
Loss on ignition	1.56

3.2.4 Coarse aggregate

20 mm and 10 mm crushed granite stones were used as coarse aggregate. The specific gravity was 2.62

and water absorption of the coarse aggregate was 0.29%. Sieve analysis was conducted as per IS: 383-1970 [7]. The Fig 2 & 3 shows the gradiation curves of 20mm and 10mm aggregates. The coarse aggregate was blended with 20mm (60%) and 10mm (40%) to its total weight of coarse aggregate.

Figure 2.Grading curve of 20 mm coarse aggregate

Figure 3.Grading curve of 10 mm coarse aggregate

3.2.5 Fine aggregate

The river sand was used as fine aggregate. The specific gravity was 2.6 and water absorption of the fine aggregate was 0.31%. Sieve analysis was conducted as per IS 383:1970 [7]. The Fig 4. Shows the gradiation curve of fine aggregate. Based on particle distribution fine aggregate is concluded as zone –II.

3.2.6 Water

The ordinary tap water was used in present study which satisfies water standards as per IS 456 - 2000 [8].

Figure 4. Grading curve of fine aggregate

4. Experimental Procedure

4.1 Mix design

The Conventional concrete (CC) M 25was designed as per IS 10262-2009 [9] and IS 456-2000 [8] and the designed target strength was fixed as 32Mpa after 28 days of curing. The designed M25 CC mix was used to prepare Class F fly ash blended mixes by replacing the FA at various levels of 0%, 25%, 35% and 45% of CC cement weight. The NAD was replaced in water at various replacement dosages of 0.00%, 0.25%, 0.50%, 0.75 and 1.00% of cementitious material weight by maintaining constant liquid – binder ratio (0.5) which affects the compressive strength [8]. Here, liquid refers to water content with or without egg replacement and binder refers to cementitious content the mixing process was showned in Fig 5. The design mix proportions are shown in Table 4.

Sample Notation	Cement (Kg)	Fly Ash (Kg)	Fine aggregate (Kg)	Course aggregate (Kg)	Water (lts)	% of NAD	Quantity of NAD (lts)
					180.00	0.00	0.00
	260	0.00			179.10	0.25	0.90
C-100_FA-0	360	(0%)	745	1150	178.20	0.50	1.80
	(10070)	(070)			177.30	0.75	2.70
					176.40	1.00	3.60
	270 (75%)	90 (25%)	745	1150	180.00	0.00	0.00
					179.10	0.25	0.90
C-75_FA-25					178.20	0.50	1.80
					177.30	0.75	2.70
					176.40	1.00	3.60
			745		180.00	0.00	0.00
	a a (179.10	0.25	0.90
C-65_FA-35	234	126		1150	178.20	0.50	1.80
	$(0.5 \ \%)$	(35%)			177.30	0.75	2.70
					176.40	1.00	3.60
C-55_FA-45	198	162	745	1150	180.00	0.00	0.00

Sample Notation	Cement (Kg)	Fly Ash (Kg)	Fine aggregate (Kg)	Course aggregate (Kg)	Water (lts)	% of NAD	Quantity of NAD (lts)
	(55%)	(45%)			179.10	0.25	0.90
					178.20	0.50	1.80
					177.30	0.75	2.70
					176.40	1.00	3.60

Figure 5. Mixing process of concrete ingradents

4.2 Testing hardened mechanical properties

This reseach concentrates on mechanical properties of hardened concrete for designed mixes. The mechanical properties are unit weight, compressive strength, Splitting Tensile Strength (STS) and Modulus of Elasticity (MOE) [9]. Three cubes of size 150 mm were cast and tested for compressive strength for each age and for each mix. Three cylindrical specimens of size 100 mm × 200 mm were cast and tested for each test, and those were unit weight, STS and MOE for each age and for each mix. The mechanical properties were conculed by considering the average of three samples. The Fig 6 and 7 shows the failue sample of compression and STS. The unit weight of mixes was determined by measuring weight and volume of cylindrical specimens prior to STS and MOE tests. The unit weight of hardened concrete (γ_c) was determined after 7, 28, 56 and 112 days of curing for all the mixes.

Figure 6.Compression Failue of cube

Figure 7. Splitting tensile failure of cylinder

5. Results and Discussion

5.1. Unit weight of hardened concrete

The average of three cylindrical specimen unit weight of hardened concrete were showned in Table 5 and Fig 8.A to 8.D for all the mixes. From the results it is observed that, the unit weight of CC and FA mixes have been increased significantly at 0.25% NAD replacement at all curing periods than that of 0% NAD mixes of CC. The increase in unit weight is due to improvement of strength. The same trend was observed in remaining all mechanical properties of CC. There by increaseing the percentage of NAD the decreasing of unit weight was observed in both CC and FA mixes. The unit weight of concrete decreases with increasing of fly ash percentage replacement level were observed. The low specific gravity of fly ash leads to decreasing the unit weight of concrete.Siddique [11&12] reported that the unit weight of Class F fly ash blended concrete decreases with increasing replacement level of FA.

	7 Days	28 Days	56 Days	112 Days			
	C-100 _ FA-0						
0.00% NAD	2410.57	2425.29	2442.95	2445.12			
0.25% NAD	2452.96	2476.45	2479.12	2481.03			
0.50% NAD	2447.36	2465.91	2475.33	2477.56			
0.75% NAD	2445.41	2461.53	2461.63	2462.07			
1.00% NAD	2441.57	2459.62	2467.56	2469.40			
	C-75_FA-2	25					
0.00% NAD	2398.12	2415.36	2434.72	2437.54			
0.25% NAD	2412.58	2458.63	2467.81	2473.45			
0.50% NAD	2402.36	2442.49	2471.69	2473.36			
0.75% NAD	2396.45	2436.78	2457.57	2459.70			
1.00% NAD	2391.38	2421.83	2451.68	2452.09			
	C-65_FA-35						
0.00% NAD	2373.57	2439.65	2449.21	2457.36			
0.25% NAD	2397.52	2455.78	2469.75	2473.48			
0.50% NAD	2389.47	2451.45	2472.69	2474.96			

Table 5: Density of Concrete (kg/M³)

0.75% NAD	2389.14	2434.63	2459.45	2461.78
1.00% NAD	2381.47	2419.68	2453.78	2456.78
	C-55_FA-4	15		
0.00% NAD	2362.37	2418.45	2433.07	2434.87
0.25% NAD	2381.65	2451.56	2461.76	2464.71
0.50% NAD	2371.63	2449.75	2469.49	2471.06
0.75% NAD	2367.49	2433.46	2455.12	2457.76
1.00% NAD	2364.18	2412.76	2449.09	2451.78

Figure 8.A. Unit weight of C-100_FA-0

Figure 8.B. Unit weight of C-75_FA-25

Figure 8.D. Unit weight of C-55_FA-45

5.2. Compressive strength

The cube average compressive strength of all mixes were showned in Table6and Fig 9.A to 9.D. From the results, it is observed that compressive strength of concrete was decreased with increasing FA replacement level at 7 days at 0% NAD. It is due to the Class F fly ash will have low strength at early ages [13]. The CC (C-100_FA-0) mix having higher compressive strength at 7 days of curing than that of FA blended concrete. Siddique [12] reported that the compressive strength of Class F fly ash blended concrete was decreased with increasing the FA replacement at early ages. But at 0.25% of NAD dosage the compressive strength of CC and FA mixes were increased when compared to without NAD dosage mixes. Ramesh Babu [3] revealed that the NAD dosage of 0.25 % is considered as optimum dosage and at this dosage the compressive strength of CC

mixes were increases and that is higher than that of with out NAD mixes. The 28 days designed compressive strength of M25 grade CC mix was achieved with 0.25% NAD at 7 days of curing. This shows that NAD had very much significant effect to develop the strength in CC and FA blended mixes. The C-100-FA-0 mix with 0.25% NAD achived 72% higher strength than that of same mix without NAD at 7 days hydration.

NAD Quantity	0.00%	0.25%	0.50%	0.75%	1.00%		
C-100 _ FA-0							
7 Days	20.67	35.56	34.67	33.64	25.78		
28Days	32.44	42.44	41.56	38.89	36.25		
56Days	37.63	46.15	43.15	40.76	38.64		
112Days	41.27	48.47	44.58	43.36	42.14		
C-75_FA-25							
7 Days	19.78	22.22	23.56	22.49	18.80		
28Days	31.13	36.22	35.67	33.78	30.67		
56Days	38.97	44.36	41.06	38.47	36.85		
112Days	45.32	49.32	45.25	42.07	38.89		
C-65_FA-35							
7 Days	17.89	20.89	20.09	18.98	14.67		
28Days	29.65	35.45	34.89	31.78	28.11		
56Days	40.32	46.52	42.49	39.72	38.07		
112Days	49.07	56.07	47.69	44.89	41.56		
C-55_FA-45							
7 Days	16.67	20.44	18.22	15.56	14.67		
28Days	27.12	34.22	31.56	30.89	27.33		
56Days	37.05	44.32	41.32	38.49	36.12		
112Days	44.23	52.22	48.44	44.22	39.56		

 Table 6: Compressive strength of concrete cubes (MPa)

After 28 days of curing the mix with 25% fly ash replaced mixes achieved 28 days designed strength without NAD. The 25% FA replacement mix having 4% less strength than that of CC without NAD. But where as with 0.25% NAD dosage all the mixes have achieved designed strength. The compressive strength of concrete decreased by 14%,16% and 19% with the replacement of FA with replacement levels of 25%, 35% and 45% of fly ash repectively at 0.25% NAD when compared to those with 0% fly ash mix. Where as compared to designed strength (32MPa), the strength of mixes were higher as 32%, 13%, 11% and 7% for 0%, 25%, 35% and 45% respectively at 0.25% NAD dosage. There by increasing the NAD dosage greather than 0.25% the reduction in strength was observed. It was observed that from this experimental work, the liquid form of Calcium present in NAD is effectively involved to enchance the hydration and to get the higher strengths. The increased compressive strengths from 0% to 0.25% NAD was 31%, 16%, 19% and 26% for 0%, 25%, 35% and 45% FA replacement respectively.

After 56 days of curing the strength increment was observed in all the mixes. At 0%NAD all the mixes achieved designed strength, but 35% FA replaced concrete mix achieved higher strength amount all the mixes after 56 days of curing. The increaseing trend was observed from 0% to 35% FA replaced mixes and there after falling trend was observed at 0% NAD dosage. It shows that the optimum replacement level of fly ash to get higher strength at lateral ages is 35%. The compressive strength of 35% FA replacement mix is 7% higher than that of CC mix at 0% NAD. It is evident that the FA blended mix gets higher strength at later ages due to its pozzolanic action. The trend was observed at optimum NAD of all the mixes. The strength increments from 28 to 56 days was 8%, 22%, 31% and 30% for 0% to 45% FA replacement levels at 0.25% NAD dosage. There by increasing NAD dosage greather than 0.25% the strength was reduced. The strength increments is very much significant at 35%. Ravina [14] had concluded that Class F fly ash concrete has higher strength at later ages.

After 112 days of curing, the same trend of strength was observed. The compressive strength was increased for up to 35% FA replacement and there by increasing the FA replacement decreasing the strength was

observed. The 35% FA replacement mix achieved higher strength among all the mixes at 0% NAD dosage. At 0.25% NAD all the FA replaced mixes achieved higher strength than that of CC mix. This shows that the NAD effect is continues in FA blended mixes after 112 days to enhance it strength. The strength increaments from 56 to 112 days was 5%, 11%, 20% and 18% for 0% to 45% replacement levels of FA respectively. It can be concluded that NAD is effectly involved to enchance the pozzolanic action also [15].

Figure 9.A. Compressive strength of C-100_FA-0

Figure 9.B. Compressive strength of C-75_FA-25

C-65_FA-35

5.3 Splitting tensile strength

The Splitting Tensile Strength (STS) of concrete mixes are shown in Table 7 and Fig 10.A. to 10.D. From the results, it is observed that STS values of CC is higher than that of FA blended mixes at 0% NAD replacement level at 7days. Which shows the same treand of compressive strength. The CC mix with 0.25% NAD had achieved 31% higher STS than that of same mix with out NAD after 7 days of curing. The same significant effect also observed in FA blended mixes at 0.25% NAD replacement level. The same incremental trend was observed in FA blended mixes at 0.25% NAD replacement level, but the percentage of increments were decresing with increasing the FA replacement level. The STS increments were 31%, 12%, 7% and 5% for

0% to 45% Class F fly ash replacements. This is due to slower pozzolanic action of Class F fly ash in early days. Siddique [12] concluded that the compressive strength and STS of FA blended concrete was decresase with increase in FA replacement. There by increasing of NAD dosage the decressing of STS were observed. So that 0.25% NAD can be concluded as optimum dosage for all the CC and Class F fly ash mixes for STS.

NAD Quantity	7 DAYS	28 DAYS	56 DAYS	112 DAYS			
C-100 _ FA-0							
0.00%	2.52	3.34	3.41	3.54			
0.25%	3.31	3.78	4.07	4.17			
0.50%	3.01	3.26	3.76	3.84			
0.75%	2.59	3.11	3.65	3.79			
1.00%	2.54	3.06	3.45	3.62			
C-75_FA-2	25						
0.00%	2.12	2.93	3.43	3.68			
0.25%	2.37	3.47	3.74	4.21			
0.50%	2.31	3.22	3.59	3.94			
0.75%	2.21	3.14	3.47	3.64			
1.00%	2.01	3.03	3.31	3.51			
C-65_FA-3	35						
0.00%	2.07	2.91	3.48	3.58			
0.25%	2.22	3.41	4.14	4.37			
0.50%	2.26	3.16	3.93	4.21			
0.75%	2.14	3.11	3.82	3.98			
1.00%	1.91	3.04	3.73	3.83			
C-55 _ FA-4	45						
0.00%	1.94	2.71	3.49	3.69			
0.25%	2.05	3.17	4.09	4.24			
0.50%	1.98	3.05	3.79	4.11			
0.75%	1.87	2.89	3.61	3.88			
1.00%	1.77	2.76	3.49	3.66			

Table 7: Splitting tensile strength of concrete (MPa)

After 28 days of curing, STS of CC was 3.34Mpa at 0% NAD, that is higher than 7 days STS. At 0.25% NAD all the mixes achived higher STS than that of 0% NAD, the STS increments from 7 to 28 days was 14%, 46%, 55% and 53% with 0% to 45% Class F fly ash replacement level. It is observed that the STS increments was high in Class F fly ash bleneded mixes than that of CC up to 35% FA, there by increasing the FA decressing STS was observed. So it can be concluded that the NAD effect is very much significant in Class F fly ash than that of CC mix at 0.25% of NAD. There by increasing the NAD dosage the STS was decreases.

After 56 days of curing, same STS increment trend was observed at 0% NAD dosage, but it is less than 0.25% NAD dosage for all the mixes. The mix C-65_FA-35 mix achived 4.14 Mpa, it higher amount all the mixes at 0.25% NAD. The STS increments at 0.25% NAD dosage for 28 days to 56 days was 7%, 8%, 29% and 21% with 0% to 45% Class F fly ash replacement levels. The rate of increment of STS was reducing from 28 days to 56 days when comparted to 7 days to 28 days. It indicates the strength gaining capacity of mixes gradurally reduces. The same trend observed after 112 days also. The increasing the FA replacement increase in STS was observed up to 35% FA replacement. There by Increasing FA replacement higher than 35% decreasing in STS was observed. So that the C-65_FA-35 mix achieved higher STS than that of all mixes at 56 days and later.

Previous studies reveled that higher fines (or) admixtures have more influence on tensile strength of concrete [15]. The mix C-65_FA-35 achived higher STS at 0.25% NAD dosage, it show that the NAD is effectivley involved to enchace the strength and improves the pozzolanic action. Whereas all FA blended mixes at 0.25% NAD attained higher STS than that of CC. It is evident that pozzalanic action of Class F fly ash at

later ages [11-19] and improvement of interfacial transition zone (ITZ) between paste and aggregate [15] with incorporation of 0.25% NAD dosage.

5.4. Modulus of Elasticity

The Modoulus of Elasticity (MOE) of CC and Class F fly ash blended mixes were shown in Fig 11.A. to 11.D.From the results, it is observed that the MOE of CC was increases with increase in curing period at 0% NAD dosage. After 7 days of curing, increasing the FA replacement level the decrease in MOE was observed. At 0.25% NAD the MOE of CC was 29.54Gpa and that is 40% higher than 0% NAD dosage of same mix. It shows that the NAD was also have very much significant effect to enhance the MOE at 0.25% NAD. There by increasing NAD the reduction of MOE was observed. The same increasing treand was observed in FA blended mixes, but the rate of increments was less in FA blended mixes than that of CC. It can be also consider as slower pozzalanic action.

After 28 days, the MOE was increased with age for all the mixes with and without NAD. The MOE of CC after 28 days of curing was 32.21Gpa, which is greater than amount all the FA blended mixes. The rate of increment of MOE from 7 days to 28 days was 14%. The same increment trend was followed by remaing FA blended mixes, but rate of increment is less. This is due to lower strength of FA blended concrete at early ages. All the mixes follows same trend patren of compressive strength. [15, 18-20].

After 56 days, MOE increment was continues in all the mixes with and without NAD with different rate of increments. The mix C-65_FA-35 (35% FA replacment) have achieved 31.97GPa, 34.16GPa at 0% and 0.25% NAD, which is higher than amoung all mixes. The MOE was increased by 7% with 0.25% NAD dosage. So it can be consider NAD effect was continues after 56 days also. [5] concluded that the MOE of FA blended mixes would be high at later ages. The MOE increments was observed with increase in FA replacement upto 35%. The decrease in MOE was observed in mixes greather than 35% FA replacements. After 112 days of curing, MOE of 35% FA replacement mix is higher than the amount all which is same as at 56 days curing. The rate of increment of MOE from 56 days to 112 days was 4%, but from 28 days to 56 days was 19%. It shows that the increment rate is gradually reducing.

Figure 11.A. Modulus of Elasticity of C-100_FA-0

Figure 11.B. Modulus of Elasticity of C-75_FA-25

Figure 11.C. Modulus of Elasticity of C-65_FA-35

Figure 11.C. Modulus Of Elasticity Of C-65_Fa-35

Figure 11.D. Modulus Of Elasticity Of C-55_Fa-45

5. Conclusions

The following conclusions have been drawn based on the investigation studied on the effect of natural admixture (broiler hen egg) on mechanical properties of CC and FA blended concrete:

- 1. The mechanical properties of Conventional Concrete (CC) and Class F fly ash (FA) blended mixes was very much significantly increased at 0.25% NAD dosage. So that it can be concluded as 0.25% NAD is optimum dosage for CC and FA blended mixes.
- 2. The design M25 grade concrete strength was obtained in CC at 7 days with optimum dosage of NAD
- 3. The mechanical properties of CC is rapily increased at early ages with incorporation of optimum dosage of NAD.
- 4. The compressive strength of 35% FA replacement mix achieved higher than designed strength of M25 grade concrete with 0.25% NAD dosage and it acheived higher strength than that of CC after 56 days.
- 5. The 35% FA replacment mix is concluded as optimum mix, because it achieved higher strength amount all the remaining FA blended mixes with incorporation of 0.25% NAD.
- 6. The NAD was very much actively increasing the hydration and pozzolanica action.
- 7. The splitting tensile strength and modulus of elasticity of all mixes follows the same trend as like compressive strength.
- 8. The mechanical properties of concrete is depends on compressive strength of concrete for both CC and FA blenede mixes incorporation with NAD.
- 9. The effect of NAD on Class F fly ash is very much significant effect than that of CC at later ages.
- 10. The broiler hen egg can be recommended Natural admixtes to reduce the usage of chemical admixtes to reduce the environmental problems.
- 11. The 35 % FA replacement with 0.25% NAD reduces the production cost of concrete and also consider as sustainable materials.

References

- 1. Ravina Dan and Mehta P. K. compressive strength of low cement/high fly ash concrete, *Cement and Concrete Research*. Vol. 18 (1988), 571-583.
- Ramesh Babu T S, Neeraja D. Effect of natural admixture on fresh properties and compressive strength of Class C fly ash blended concrete, *Asian Journal of Civil Engineering (BHRC)*, No. 3, 17(2016) 373-84.

- 3. Malhotra V. M and Painter K. E. Early-age strength properties, freezing and thawingresistance of concrete incorporating high volumes of ASTM class F fly ash, *The International Journal of Cement Composites and Lightweight Concrete*, 1(1989) 36-37.
- 4. Binici H, Aksogan O, Ahmet H, Cinpolat E. Mechanical and radioactivity shielding performances of mortars made with cement, sand and egg shells, *Construction and Building Materials*, 93(2015) 1145-50.
- 5. Ramesh Babu T S, Guru Jawahar J, Venkat Kiran P, Chiranjeevi P, Surya Prakesh M and Purushotham Reddy Y, An experimental study on effect of natural admixture on mechanical properties of Class C fly ash blended concrete, *Asian Journal of Civil Engineering (BHRC)*, No. 3, 17(2016) 373-84.
- 6. IS 12269. Specification for 53 Grade Ordinary Portland Cement, Bureau of Indian Standards, New Delhi, India, 1987.
- 7. IS 383. Specification for Coarse and Fine Aggregates from Natural Sources for Concrete, Bureau of Indian Standards, New Delhi, India, 1970.
- 8. IS 456. Plain and Reinforced Concrete Code for Practice, Bureau Of Indian Standards, New Delhi, India, 2000.
- 9. IS 10262. Concrete Mix Proportions Guide Line, Bureau of Indian standards, New Delhi, India, 2009.
- 10. IS: 516-1991. Methods of tests for strength of concrete. Bureau of Indian Standards, New 378 Delhi, India.
- 11. Siddique R. Performance characteristics of high-volume Class F fly ash concrete, Cement and Concrete Research 34 (2004) 487–493.
- 12. Siddique R. Effect of fine aggregate replacement with Class F fly ash on the mechanical properties of concrete. Cem Concr Res 2003;33(4):539–47.
- 13. Ravina, D., 'Properties of fresh concrete incorporating a high volume of Class F fly ash as partial sand replacement', *Materials and Structures*. 30 (1997) 473:479
- 14. Ravina, D., 'Mechanical properties of Structural concrete incorporating a high volume of Class F fly ash as partial sand replacement', *Materials and Structures*.31 (1998) 84:90
- 15. Guru Jawahar J, Sashidhar C, Ramana Reddy IV, Annie Peter J. Effect of coarse aggregate blending on short-term mechanical properties of self compacting concrete, *Materials and Design*,43(2013) 185-94.
- Ravina D, Mehta PK. Properties of fresh concrete containing large amounts of fly ash. Cem Concr Res 1986;16:227–38.
- 17. Uysal M and Akyuncu V Durability performance of concrete incorporating Class F and Class C fly ashes. *Construction and Building Materials*, 34 (2012) 170–178.
- 18. Parra C, Valcuende M, Gomez F. Splitting tensile strength and modulus of elasticity of self-compacting concrete, *Construction and Building Materials*, 25(2011) 201-7.
- 19. Aggarwal P, Aggarwal Y, Gupta SM. Effect of bottom ash as replacement of fine aggregates in concrete, Asian Journal of Civil Engineering (Building and Housing), No. 1, 8(2007) 49-62.
- 20. Mehta PK, Monteiro PJM. *Concrete: Structure, Properties and Materials*, 2nd ed, Englewood Cliffs, New Jersey: Prentice Hall Inc, (1993) 548.