
 
 
 

Charge density distributions and charge form factors of some 
even-A p-shell nuclei 

 

Ahmed N. Abdullah 
 

Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq. 
 

 

Abstract :. The ground state charge density distributions, elastic electron scattering form 

factors and the corresponding rms radii for some 1p-shell nuclei with Z = N (such as 
6
Li, 

10
B, 

12
C and 

14
N nuclei) have been calculated using the single particle radial wave functions of 

harmonic oscillator (HO) and Woods-Saxon (WS) potentials. The calculated results are 

discussed and compared with the experimental data. It is found that the contributions of the 
quadrupole form factors in 

10
B and 

14
N nuclei, which are described by the undeformed p-shell 

model, are essential for obtaining a remarkable agreement between the theoretical and 

experimental form factors. 
Keywords : Charge density distributions, quadrupole form factors, Woods-Saxon and   

harmonic oscillator potentials. 
 

Introduction 

The charge density distributions (CDD) and form factors are the most important quantities in the 
nuclear structure which were well studied experimentally over a wide range of nuclei. This interest in the CDD 

is related to the basic bulk nuclear characteristics such as the shape and size of nuclei, their binding energies, 

and other quantities which are connected with the CDD. Besides, the density distribution is an important object 
for experimental and theoretical investigations since it plays the role of a fundamental variable in nuclear theory 

[1]. Electron–nucleus scattering is known to be one of the powerful tools for investigating nuclear charge 

density distributions.  Charge density distributions for stable nuclei have been well studied with this method [2-
4]. The comparison between calculated and measured electron scattering form factors has long been used as a 

successful test of nuclear models which have been adopted through the last fifty years. One of these models is 

the shell model [5] which is the most modern microscopic nuclear structure calculations for finite nuclei and has 

been very successful in describing the nuclear structure [6]. The Woods–Saxon potential, as an important mean 
field nuclear potential describes the interaction of single nucleon with whole nuclei and widely used in nuclear 

structure, nuclear reactions, nuclear scattering and particle physics, has been attracted a great deal of interest for 

some decades. In order to study the structure of nuclei contain, particle-hole theory, many nucleon 
configuration, electromagnetic transitions and nuclear decay the Woods–Saxon basis has been used as better 

choice than harmonic oscillator basis in both relativistic and non-relativistic theories of nuclear mean-field shell 

model [7]. Mirea [8] has been computed the single-particle energies and wave functions of an axially two-center 

Woods-Saxon potential. The spin-orbit interaction was included in the Hamiltonian. Lojewski and Dudek [9] 
evaluated the proton and neutron separation energies and mean square charge radii within the Woods–Saxon 

plus BCS model for even-even nuclei with 40 ≤ A ≤ 256. 
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In this work, we study the ground state charge density distributions, charge form factors and the 

corresponding rms radii for some 1p-shell nuclei with Z = N such as 
6
Li, 

10
B, 

12
C and 

14
N nuclei using the radial 

wave function of harmonic oscillator and Woods-Saxon potentials and compared the calculated results with 
experimental results 

Theory  

     The single nucleon wave function, as fundamental parameter for studying nuclear structure and constructing 

the wave function of nuclei, is derived from single nucleon Schrodinger equation. The single-nucleon radial 

Schrodinger equation for a central potential can be written as [7]: 
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By introducing the reduced radial wave function, )()( rrrR  , which is normalized by 1)( 3  rdr , Eq. 

(1) is rewritten as 

 
 

  0
1

2

2)(
2

2

22

2








 
 rR

rm
rVE

m

dr

rRd 


                                                                                       (2) 

For the local potential  rV , the Woods-Saxon shape is used in the compact form [10,11]: 
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where  rV0  is the spin-independent central potential: 
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 rVso  is the spin-orbit potential: 
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and  rVc  is the Coulomb potential generated by a homogeneous charged sphere of radius Rc  [12]: 
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The radii 0R , soR  and cR  are usually expressed as: 

3/1ArR ii                                                                                                                                                           (8) 

The point density distributions of neutrons, protons, and matter can be written respectively as [1]: 
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where 
nlj

morpnX ,  represents the number of neutrons, protons, or nucleons in the nlj-subshell. 

    From the proton density )(rp and the intrinsic charge distribution fp of one proton, one can obtain the 

charge distribution of the nucleus with the following folding relation [13]: 

  rdrrfrr ppch )()()(                                                                                                                     (10) 

The root mean square (rms) radii of the neutron, proton and charge distributions can be obtained from these 

densities as follows [13]: 
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    The elastic electron scattering form factors from considered nuclei are studied by the plane wave Born 

approximation (PWBA). In the PWBA, the incident and scattered electron waves are represented by plane 

waves. The elastic electron scattering form factor is simply given by the Fourier-Bessel transform of the ground 
state charge density distribution ρch(r) [14], i.e. 
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where 

qrqrqrj /)sin()(0                                                                                                                                (13)   

is the zeroth order spherical Bessel function and q is the momentum transfer from the incident electron to the 
target nucleus.  

The quadrupole form factors F2(q) (which are important in 
10

B and 
14

N nuclei) are described by the undeformed 
p-shell model as [15]: 
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Where j2(qr) is the second order of the spherical Bessel functions, Q is the quadrupole moment and ρ2ch(r) is the 

quadrupole charge density distribution assumed, according to the undeformed p-shell model, to be the same as 

that of ground state charge density distribution ρch(r). 

Here, PJ is a quadrupole projection factor given as: 

)32)(1/()12(  JJJJPJ                                                                                                                  (15) 

Where J is the angular momentum of the ground state. 

 

Results and discussion  

      The charge density distributions, charge form factors and charge and matter root mean square (rms) 

radii of 
6
Li, 

10
B, 

12
C and 

14
N nuclei have been calculated using single-particle radial wave functions of Woods-

Saxon (WS) and harmonic oscillator (HO) potentials. The calculated CDD of 
6
Li nucleus has been compared 

with the experimental data of two parameter Fermi model CDD [16], while the calculated CDD's of 
10

B, 
12

C and 
14

N nuclei have been compared with the experimental data of the harmonic-oscillator CDD [17,18]. Table-1 
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displays the parameters of Woods-Saxon V0, Vso, r0, rso, a0, aso and rc employed in the present calculations for 
6
Li, 

10
B, 

12
C and 

14
N nuclei. Table-2 shows the calculated results of the charge and matter rms radii for 

6
Li, 

10
B, 

12
C and 

14
N nuclei compared with the experimental results [11,17,19]. It is clear from this table that the obtained 

results are in a good agreement with experimental results within quoted error. In Table-3 the calculated single-

particle energies (ε) of the considered nuclei are compared with those obtained by the shell model OXBASH 

code [20]. This comparison demonstrates that the calculated single-particle energies are in very good 

coincidence with the results of the shell model OXBASH code.  

Table -1: The parameters of Woods-Saxon employed in the present study for 
6
Li, 

10
B, 

12
C, and 

14
N. 

 

Nuclei V0 (MeV) Vso (MeV) a0 (fm) aso (fm) r0 (fm) rso (fm) rc (fm) 
6
Li 47.417 6.0 0.526 0.526 1.381 1.381 1.552 

10
B 49.587 6.0 0.542 0.542 1.236 1.236 1.306 

12
C

 
58.587 6.0 0.539 0.539 1.267 1.267 1.351 

14
N 62.962 6.0 0.527 0.527 1.319 1.319 1.431 

 

Table -2: The calculated matter and charge rms radii for 
6
Li, 

10
B, 

12
C and 

14
N nuclei along with the 

experimental data. 

Nuclei 

2/1
2

cal
chr  (fm) 

2/1

exp

2

chr  (fm) 

[11,17] 

2/1
2

cal
mr  (fm)  

2/1

exp

2

mr  (fm) 

 [19] HO WS HO WS 
6
Li 2.43 2.46 2.43±0.06 2.51 2.48 2.46±0.21 

10
B 2.45 2.60 2.45±0.12 2.39 2.52 2.56±0.23 

12
C

 
2.48 2.47 2.47±0.01 2.41 2.38 2.35±0.02 

14
N 2.53 2.49 2.49±0.03 2.455 2.398 2.47±0.03 

 

Table-3: The calculated single-particle energies for 
6
Li, 

10
B, 

12
C and 

14
N nuclei along with results of the 

Ref. [20].  

 

Nuclei nlj 
proton neutron  

εcal (MeV) ε (MeV) [20] εcal (MeV) ε (MeV) [20] 

6
Li 

1s1/2 18.880 18.880 20.167 20.167 

1p3/2 3.182 3.182 4.238 4.238 

10
B

 1s1/2 21.972 21.972 24.555 24.555 

1p3/2 6.703 6.703 8.915 8.915 

12
C

 1s1/2 31.770 31.770 34.819 34.819 

1p3/2 15.691 15.691 18.448 18.448 

14
N

 

1s1/2 38.635 38.635 41.988 41.988 

1p3/2 23.260 23.260 26.376 26.376 

1p1/2 19.667 19.667 22.795 22.795 

 

       The dependence of the ground state CDD's (in fm
-3

) on r (in fm) for 
6
Li,

10
B, 

12
C and 

14
N nuclei are 

displayed in figures 1(a) to 1(d), respectively. In these figures, the filled circle symbols are the experimental 

data [16,17,18] whereas the blue and red curves are the calculated CDD's by Woods-Saxson (WS) and 
harmonic oscillator (HO) potentials, respectively. Fig.1 demonstrates that both red and blue curves are in 

excellent agreement with the experimental data throughout the whole range of r.   
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Fig. 1: The calculated charge density distributions for 
6
Li,

10
B, 

12
C and 

14
N nuclei. The filled circle symbols 

are the experimental data. 

      

      In Fig. (2) the calculated charge form factors for 
10

B (top panel) and 
14

N (bottom panel) nuclei are 

compared with those of experimental data (filled circle symbols) [21,22]. Parts a and b of this figure are the 
calculated results obtained by HO and WS potentials, respectively. The individual contributions to the form 

factor are shown as dashed and dash–dotted curves for the monopole |F0(q)|
2
 and quadrupole |F2(q)|

2
 form 

factors, respectively, while the solid curves represent the total contribution |F(q)|
2
, which is obtained as the sum 

of |F0(q)|
2
 and |F2(q)|

2
. The quadrupole form factors are calculated by the undeformed p-shell model. This figure 

shows that the results of monopole form factors for 
10

B and 
14

N nuclei don’t describe the experimental data very 

well in the range of momentum transfers q>1.4 fm
-1

 and 1.5 fm
-1

 for 
10

B and 
14

N nuclei, respectively. It is very 

clear that the contribution of the quadrupole form factors gives a strong modification to the monopole form 
factors and brings the calculated values very close to the experimental data. 
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Fig. 2: The calculated form factors obtained by the HO and WS potentials for 
10

B and
 14

N nuclei. The 

experimental data are taken from Ref. [21] for 
10

B and taken from Ref. [22] for 
14

N. 

 

      In Figs. 3(a) and 3(b) we explore the calculated results for the elastic charge form factors of 
6
Li and 

12
C 

nuclei, respectively. The dashed and solid curves are the elastic charge form factors obtained by Woods-Saxson 
(WS) and harmonic oscillator (HO) potentials, respectively whereas the filled circle symbols are the 

experimental results. In 
6
Li nucleus, the calculations of both the dashed and solid curves are in very good 

agreement with those of experimental data of ref. [15] up to q = 2.3 fm
-1

 and 1.5 fm
-1

 for the dashed and solid 
curves, respectively and they underestimate slightly these data beyond this region of q. In 

12
C nucleus, the 

calculated results of the dashed curve agree with the experimental data [23] up to q = 1.8 fm
-1

 and it is 

discredited these data at higher momentum transfer. On the other hand, the experimental data are described very 
well by the calculated results of solid curve throughout all values of momentum transfer q. In addition, the 

diffraction minimum which is known from the experimental data is very well reproduced by the calculations of 

the dashed and solid curves. 
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Fig. 3: The elastic charge form factors for 
6
Li and

 12
C nuclei calculated by the WS (dashed curve) and HO 

(solid curve) potentials. The experimental data (filled circle symbols) for 
6
Li are taken from Ref. [15] 

while the experimental data for 
12

C are taken from ref. [23]. 

 

Conclusions 

      The CDD and electron scattering form factors for 
6
Li, 

10
B, 

12
C and 

14
N nuclei are calculated by the 

single particle radial wave functions of Wood-Saxson (WS) and harmonic oscillator (HO) potentials. From this 

work, it is possible to draw the following conclusions: 

1- The calculated results of CDD for consider nuclei obtained by both WS and HO potentials are in very good 

accordance with experimental data.  

2- The calculated charge and matter rms radii for the investigated nuclei are in a good agreement with the 

experimental data. 

3- The results of elastic charge form factors for 
6
Li nucleus calculated by WS potential are more close to the 

experimental data than the calculated results with HO potential.  

4- The calculated elastic form factors of 
12

C nucleus using HO potential are in the best agreement with the 

experimental data. 

5- The contribution of the quadrupole form factors in 
10

B and 
14

N nuclei, which are described by the 

undeformed p-shell model, are essential in obtaining a remarkable agreement between the theoretical and 

experimental form factors. 
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