

International Journal of ChemTech Research

ChemTech

CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.6, pp 1039-1058, 2017

GC–MS analysis of biologically active compounds in *Canthium parviflorum* Lam. leaf and callus extracts

Sirigiri Chandra Kala* and Kandru Ammani

Department of Botany & Microbiology, Acharya Nagarjuna University, agarjuna Nagar, Guntur, Andhra Pradesh, India.

Abstract : *Canthium parviflorum* is an important medicinal plant widely used in traditional systems of medicine. In the present work, we reported the FTIR and GC-MS analysis by using in vitro grown callus on MS medium supplemented with BA (0.1 to 0.5 mg/l) and NAA (0.5 and 1.0 mg/l) used with leaf explants compared with wild leaf explants. After 2 to 3 subcultures callus was collected and dried at normal temperature. To explore the phyto profile of callus extracts of *Canthium parviflorum*, fluorescence UV-Vis and FT-IR were analysed and GC-MS analysis revealed more phytocompounds comparatively with wild plants. The compounds were identified by comparing their retention time and peak area with that of literature and by interpretation of mass spectra. More than sixty compounds were extracted from the callus extracts. The presence of phyto-components reveals the importance of the plant as medicinally used. So, it is recommended as a plant of phyto - pharmaceutical importance.

Keywords : *Canthium parviflorum*, FT-IR, GC-MS analysis, phytocompounds, callus extracts, in vitro, pharmacological importance.

Introduction

Medicinal plants have been used as traditional treatments for numerous human diseases for thousands of years and in many parts of the world. The natural products derived from medicinal plants have proven to be an abundant source of biologically active compounds many of which have been the basis for the development of new lead chemicals for pharmaceuticals.¹The pharmaceutical companies shows that for some complex diseases, natural products still represent an extremely valuable source for the production of new chemical entities.²Phyto pharmacological screening of medicinal plants and their extracts will reveal the presence of valuable compounds and provide insight into new ways of treatment with new drugs. The accumulation of phyto chemicals in the plant cell cultures has been studied for more than thirty years, and the generated knowledge has helped in the realization of using cell cultures for production of desired phyto chemicals.³ Although very few plant cell processes are operating commercially, the most successful commercial pharmaceuticals produced from undifferentiated cell cultures are anti-biotic compounds. So, cell suspension culturing is considered one of the best approaches for studying the biosynthesis of natural products, and calli are the richest sources of cell mass when establishing such cultures.⁴

Canthium parviflorum Lam. (syn: *Plectoria parviflora*) of Rubiaceae is commonly called as Balusu in Telugu. The leaves and roots are astringent, sweet, thermogenic, constipating and tonic. They are astringent and effective against cough and indigestion.⁵ Leaves and roots of this plant are used as astringent, diuretic, febrifuge, anthelmintic, anti diarrhoea and for leucorrhoea⁶ and its used for the treatment of diabetes among

major tribal groups in South Tamilnadu.⁷ Tribes of Orissa state in India use fruits of this plant to treat headache. Traditionally the roots and leaves are used to cure vitiated conditions of Kapha in fever and constipation.⁸

Material & methods

Callus culture.

Fresh, young leaf material was collected and washed thoroughly under running tap water to remove dust particles. Leaf explants was excised aseptically and cultured on MS (Murashige & Skoog)⁹medium(1962) supplemented with BA (Benzyl adenine) (0.2 mg/l) and NAA (Naphthalene acetic acid) (0.5 and 1.0 mg/l).

Extraction from Callus Cultures

6 - 8 week-old callus derived from the leaf cuttings were collected and 25g of wild leaf explants taken after dried in an oven at $40 \pm 1^{\circ}$ c for 5 hours. 25g of leaf callus powder were extracted with 150 ml of solvent ethyl acetate and methanol for 24 h by using Soxhlet apparatus. 100 mg / ml were prepared by redissolving the extracted powder in the same solvent which was used in the extraction. This callus extracts was used for FTIR and GC-MS analysis.

Spectroscopic analysis

For UV-Vis and FT-IR spectrophotometer analysis, the crude extracts and wild plant leaf extracts were centrifuged at 3000 rpm for 10 min and filtered through Whatmann No. 1 filter paper by using high pressure vacuum pump. The sample is diluted to 1:10 with the same solvent. The extracts were scanned in the wavelength ranging from 1100-3000 nm using Perkin Elmer Spectrophotometer and the characteristic peaks were detected. FT-IR analysis was performed using Perkin Elmer Spectrophotometer system, which was used to detect the characteristic peaks and their functional groups. The peak values of the UV-Vis and FT-IR were recorded. Each and every analysis was repeated twice for the spectrum confirmation.

Procedure

The GC-MS analyses were carried out in a GC Model: 7890A GC System, MS: 5975C Inert MSD with Triple Axis Detector. Gas chromatograph fitted with a DB1 (methylphenylsiloxane, 30 m \times 0.25 mm i.d.) capillary column. The MS operating parameters were as follows: ionization potential 70 eV; ion source temperature 200°C; quadrupole 100°C, solvent delay 6.0 min , scan speed 2000 amu/s, total MS running time 35min. and Mass Scan Range: 30 to 600m/z, eV voltage 3000 volts. The concentrated extract is injected into the GC/MS instrument (HP-5MS 30m*0.25um*0.25 Agilent Technologies Part No: 19091S-433).

The sample is volatilized at the injection port and eluted through a capillary column under increasing temperature. As the sample moves through the column, various components are separated due to their affinity for the stationary phase of the column and can be identified by retention time. Each chemical component in a sample has a distinct retention time measured in minutes, shown in a peak on a graph. The integrated peak is correlated to the concentration of the chemical. A mass selective detector breaks up each chromatographic component into fragment ions, which are shown by their abundance, with each ion represented as a vertical line in increasing molecular weight. The height of each line corresponds to the abundance of that ion. The resulting mass spectrum is unique to that chemical. This mass spectrum forms a "fingerprint" that can identify the compound by a computer search of mass spectra. A computer search of the mass spectra corresponding to all the chromatographic peaks for a sample should yield a statistical match for nicotine at a 12.9 min retention time value. First, there is a "Scan" mode which looks at all the constituents of a sample, listing whatever chemical components are present

Compound Identification

Components of the ethyl acetate, methanol extracts were identified by comparison of their mass spectra and retention indices with those published in the literature and contained in The National Institute of Standard and Technology (NIST) library database. Library Version: 2.0 MS computer library.

Results

The FTIR (Fourier Transform Infrared Spectrometer) was performed from the plant callus extract of *Canthium parviflorum* to analyse the functional group. In *Canthium parviflorum* extract IR spectrum shows strong absorption peaks at 1651.07 cm-1, 1112.93 cm-1, 1735.93cm-1, 2040.69cm-1, 2216.21cm-1, 2524.82 cm-1, 2835.36 cm-1, 2947 cm-1, 3302 cm-1 which corresponds to alkene (C=C) and ether (C-O) groups (Table. 1 and Fig. 1).

Fig 1 FTIR spectrum of callus extracts Canthium parviflorum.

Table 1: 1	F T-IR	peak values	with fun	ctional gro	oups in (callus ex	stract of	Canthium	parviflorum.
									/

Peak	Functional Group
1110.00	
1112.93	Aliphatic amines (C-N Stretch) Alcohols, carboxylic acid,
	esters, ethers (C-O Stretch)
1450.47	Aromatics (C-C Stretch (in-ring)
1556.55	Primary amines
1645.28	Alkenes(-C=C-Stretch), Aldehydes, saturated aliphatic (C=O Stretch)
2042.62	Alkanes (C-H Stretch); Alkanes (terminal) (-(triple bond)
	(C-H:C-H stretch)
2520.96	Primary, secondary amines, amides (N-H Stretch)
2839.22	Alkanes (C-H Stretch); Alkanes (terminal)(-(triple bond) (C-H:C-H
	stretch); Primary, secondary amines, amides
2951.09	Alkanes (C-H Stretch)

Fig 2 GC MS analysis of leaf methanol extract of *Canthium parviflorum*

No.	R T	Name of the compound	Molecula r formula	Molec ular Weigh t	Peak area %	Structure	Biological activity
1.		2-Propanone, 1,3- dihydroxy	C3H6O3	90		ОН	cholinesterase inhibitor drugs
2.		2-Cyclopenten-1-one, 2-hydroxy-	C5H6O2	98		ОН	Antimicrobial, Anti-inflammatory, Anticancer, Dieruretic
3.		Glycerin	СЗН8ОЗ	92		он ноон	cough syrups, elixirs and expectorants, toothpaste, mouthwashes, skin care products,
4.		2H-Pyran-2,6(3H)- dione	C5H4O3	112			Antiallergic activity
5.		Cyclohexanone, 4- hydroxy-	C6H10O2	114		, ,	antioxidant capacities
6.		Benzeneacetaldehyde	С8Н8О	120			Antimicrobial

Table: 2GC MS analysis of leaf methanol extract of Canthium parviflorum

7.	Clindamycin	C18H33C IN2O5S	424		antibacterial
8.	4H-Pyran-4-one, 2,3- dihydro-3,5- dihydroxy-6-methyl-	C6H8O4	144	но он	antioxidant
9.	Benzofuran, 2,3- dihydro	C8H8O	120		Neuroinflammation
10.	IsosorbideDinitrate	C6H8N2 O8	236		chest pain, headaches
11.	Methyl 6- oxoheptanoate	C8H14O3	158	ů – – – – – – – – – – – – – – – – – – –	Anti canceer
12.	2,4-Hexadienedioic acid	C6H6O4	142	но стран	preservatives in food and drinks to prevent the growth of mold, yeast, and fungi

13.	β-D-Glucopyranose, 4- O-β-D- galactopyranosyl	C12H22O 11	342	HO OH OH OH OH	sweeten food, beverages, medications, arthritis. ^{[6}
14.	4-((1E)-3-Hydroxy-1- propenyl)-2- methoxyphenol	C10H12O 3	180	А	Antioxidant, Antimicrobial Anti inflammatory
15.	2,6- Dihydroxybenzaldehy de, carbamoylhydrazone	C8H9N3 O3	195		lipid peroxidation
16.	I-Gala-1-ido-octose	C8H16O8	240		Used for memory Drugs production
17.	n-Hexadecanoic acid	C16H32O 2	256	CH CH	Antioxidant, Hypochloesterolemic, Nematicide, Pesticide, Lubricant, Antiandrogenic, Hemolytic,5- Alpha reductase inhibitor
18.	Phytol	C20H40O	296	*	Anticancer, antioxidant, antiinflammatory and diuretic

19.	9,12-Octadecadienoic acid (Z,Z)-	C18H32O 2	280		Anti-inflammatory, Hypercholesterolemic, Cancer preventive, Hepatoprotective, Nematicide, Insectifuge, Antihistamine, Anti-eczemic, Anti- acne, 5-Alpha reductase inhibitor,
					coronary
20.	Octadecanoic acid	C18H36O 2	284		Antimicrobial and anti- inflammatory, hepatoprotective, hypercholesterolemic, anticancer
21.	1-Heptatriacotanol	C37H76O	536	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	anticancer, antineoplastic and anti-HIV
22.	1- Monolinoleoylglycerol trimethylsilyl ether	C27H54O 4Si2	498	(Jost	Antimicrobial Antioxidant Antiinflammatory Antiarthritic Antiasthma, Diuretic

The most prevailing compounds from *Canthiumparviflorum* leaf were listed methanolic extracts 2-Propanone, 1,3-dihydroxy, 2-Cyclopenten-1-one, 2-hydroxy-, Glycerin, 2H-Pyran-2,6(3H)-dione, Cyclohexanone, 4-hydroxy-, Benzene acetaldehyde, Clindamycin, 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-, Benzofuran, 2,3-dihydro, IsosorbideDinitrate, Methyl 6-oxoheptanoate, 2,4-Hexadienedioic acid, β-D-Glucopyranose, 4-O-β-D-galactopyranosyl, Phytol, Octadecanoic acid, 4-((1E)-3-Hydroxy-1-propenyl)-2methoxyphenol,2,6-Dihydroxybenzaldehyde, n-Hexadecanoic acid, Carbamoylhydrazone, l-Gala-1-ido-octose, 9,12-Octadecadienoic acid (Z,Z)-, 9,12,15-Octadecatrienoic acid, (Z,Z,Z)-, 1-Heptatriacotanol, 1-Monolinoleoylglycerol trimethylsilyl ether. The GC-MS chromatogram shows the peak area separation.

Based on the previous reports Biphenyl, 2-Methyl-4-heptanone, 1,2,4,5-Tetroxane,3,3,6.6-Tetraphenyl-, 3-Oxo-Alapha,-Ionol, Methyl 7-hydroxy-2-methyl-3,5-octadienoate, 4-(2-Hydroxy-2,6,6-Trimethylcyclohexyl)-3-buten-2-one, n-Hexadecanoic acid, E-11- Hexadecanoic acid,Ethylester, EthylHexadecanoate, Phytol, Ethyl(9Z,12Z)-9,12- Octadecanoate, Ethyl Linolenate, 1-Hexadecanol, 2-Phenoxyl-2-phenylpropanic acid, All-trans-squalene, Methyl Linolenate, Gamma-Tocopherol, DEPH;1,2-Benzenedicarboxylicacid,bis (2-hylhexyl)ester, Stigmasterol, Gamma-stigmasterol, Methyl cis-11,14,17-Icosatrienoate.¹⁰

Based on the previous reports on the Canthium coromandelicum leaf extract revealed Thirteen phytocompounds by GC-MS analysis. The components are 1,6,10-odecatriene,7,11-dimethyl -3-methylene-,(E). 3,7,11`,15-Tetramethyl-2-Hexadecan-1-ol, 2-Tridecen-1-ol, E-2-Tetradecen-1-ol, Phytol. 2-Aminononadecane, Octadecane, 6-methyl-, Didodecyl phthalate, 1-Nonodecanol, Valeric acid, 2-Pentadecyl ester, Squalence, Z-8-Methyl-9-tetradecenoic acid, Heptadecanoic acid.¹¹Canthiumparviflorum leaf with methanol extracts presence of the phytol compound exhibits more biological properties like Antimicrobial, Anticancer, Cancer preventive, Diuretic Antimicrobial, Anticancer, Cancer preventive, Diuretic, Antiinflammatory.⁹In our results we observed thephytol compound present in all areas of *Canthium parviflorum* plants including Guntur district plants also, comparatively with Tamilnadu and Chennai are plants revealed the acid.^{10,11}Octadecanoic phytoln-Hexadecanoic acid possesses antiinflammatory, compounds also hepatoprotective, hypercholesterolemic, anticancer and many other properties^{12,13} and Antimicrobial activity of hexadecanoicacid was discussed by Bergsson.¹⁴The l-gala idooctose used for the production of Drugs used to specifically facilitate learning or memory, particularly to prevent the cognitive deficits associated with dementias.¹⁵In the presence of the compound is 6- dihydroxybenzaldehyde used in the lipid peroxidation.¹⁶So comparatively with these results more compounds revealed the Guntur district area plants of Canthium parviflorum than the Tamilnadu area plants.

Fig 4 GC MS analysis of callus extract with ethyl acetate of Canthium parviflorum

No.	RT	Name of the compound	Molecular formula	Molecul ar Weight	Peak area %	Structure	Biological activity
1.	3.76	2-Nonenol	С9Н6О	140	10.18	~~~~	Lipid periodixidation
2.	4.12	Cyclohexane	C10H16	136	15.82	\square	Antimicrobial agents
3.	7.36	Azulene	C10H8	128	14.44	\bigcirc	Antiulcer Antimicrobial Antiallergic Antiinflammatory, Antipyretic Antiseptic Anticancer
4.	9.43	2-Methoxy-4- vinylphenol	С9Н10О2	128	2.295	or the second s	Antioxidant Antimicrobial Anti-inflammatory
5.	13.70	1,2- Benzenedicarboxyli c acid	C8H6O4	166	13.90	ОН	Used as Softeners, perfumes and cosmetics, plasticized vinyl seats on furniture and in cars, and clothing including jackets, raincoats and boots. Used in textiles, as dyestuffs, cosmetics and glass making
6.	15.93	2- Naphathalenemetha nol	C11H10O	158	13.39	() () (H	anti-micro- organism

Table: 3 GC MS analysis of callus extract with ethyl acetate of <i>Canthium parvi</i>

7.	13.35	Diethyl pthalate	C12H14O4	222	13.39	L	Antimicrobial
						Å	Antifouling
8.	13.41	Dodecanol	C12H24O	184	4.80	<u> </u>	Antioxidant
9.	19.04	Naphathalene, 1-	C11H10	142	1.86		Anti-tumor, analgesic antibacterial,
		methyl					anti-inflammatory sedative, fungicide
10.	18.34	7-Hydroxy-	C10H8O4	192	1.42	1000 NOT 1000 NO	Antimicrobial
		6methoxy-2H-1-				\sim	
		benzopyran-2-one					
11.	16.22	3-Naphathalene-	C18H23N	269	1.22		anti- insect, anti- microbial
		2yl-3-piperidin-1yl-	0			NH NH	
		propan-1-o1					
12.	23.96	1-	C22H29N	339	1.86	\frown	Urinary track infections, Antiviral,
		Piperidinepropanoi	02			· · · · ·	antidepressant, cytotoxic and
		c aciu					antimatariai activity.
12	20.28	Din actul nhthalata	C24112804	200	1.26		Antivonom
15.	20.28	Di-n-octyr phinaiate	C24H38U4	390	1.20	M27 7 700 Rd an 10	Antivenom
						∞y~~~~	
14.	18.22	13-Docosenamide	C22H43N	337	1.44	1	antimicrobial, antioxidant and
			0			•~~~~~	antiinflammatory properties
						l, l	

15.	16.24	9-Octacenamide	C18H35N O	281	1.68	HAN CONTRACT	Anti-inflammatory activity, antibacterial activity, and anti-cancer properties
16.	18.66	Stigmasterol	С29Н48О	412	1.22	.cost	Antioxidant, hypoglycemic and thyroid inhibiting properties, precursor of progesterone, antimicrobial, anticancer, antiarthritic, antiasthama, anti inflammatory, diuretic

The most prevailing major compounds were revealed from *Canthium parviflorum* callus with ethyl acetate extracts 2-Nonenol, Cyclohexane, Azulene, 2-Methoxy-4-vinylphenol, 1,2-Benzenedicarboxylic acid, 2-Naphathalenemethanol, Diethyl phthalate, 2-Decen-1-o1, Naphathalene, 1-methy, 7-Hydroxy-6methoxy-2H-1-benzopyran-2-one, 3-Naphathalene-2yl-3-piperidin-1yl-propan-1-o1, 1-Piperidinepropanoic acid, Di-n-octyl phthalate, 13-Docosenamide, 9-Octacenamide, Stigmasterol.

Prabhu *et al.*, 2013 reported the Cyclohexane,1,2-Benzenedicarboxylic acid, Stigmasterolphyto compounds are present in the ethyl acetate leaf extract of *Canthium parviflorum*, these compounds matched with our ethylacetate leaf callus extract results. In the presence of the callus extracts Stigmasterol, it has been reported to induce apoptosis in Ehrlich's ascites carcinoma in mice through the activation of protein phosphatise 2A via ceramide.¹⁷Most of these compounds have been associated with several biological or pharmaceutical properties; it's responsible for medicinal potential of the plants.

Fig 6 GC MS analysis of callus extract with methanol of Canthium parviflorum

The most prevailing major compounds were revealed from callus with methanol extracts 2-Propanone, 1,3-dihydroxy, 1,2-Ethanediol, 3-Buten-1-ol, Butyrolactone, 2-Cyclopenten-1-one, 2-hydroxy-, Cyclohexanone, 2,4-Dihydroxy-2,5-dimethyl-3(2H)-furan-3-one, 1,3-Dioxane, 2,4-dimethyl-, Urea, N-butyl-N-nitroso-, Formic 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-, Isosorbide Dinitrate, 1,2,3acid, butyl ester, Propanetriol, monoacetate, Piperidine, 1-(ethoxymethyl, 1-(5-Hydroxypentyl) piperidine, Isosorbide Dinitrate, DL-Arabinose, 2-Methoxy-4-vinylphenol, 4-Hydroxy-2-methylacetophenone, Undecanoic acid, 11-amino-, 1-Ethyl-1-propoxy-1-silacyclopentane, Benzeneacetic acid, 2-nitro-, 2,7-Dioxa-tricyclo[4.4.0.0(3,8)]deca-4,9diene, Diethyl Phthalate, d-Mannose, 5-(1-Hydroxy-1-methyl-ethyl)-3-(4-methoxy-phenyl)-isoxazolidin-5-ol, α -D-Glucopyranoside, O-α-D-glucopyranosyl-(1.fwdarw.3)-β-D-fructofuranosyl,D-Glucose, 6-O-α-Dgalactopyranosyl-, Phenol. 4-(3-hydroxy-1-propenyl)-2-methoxy-, 4-((1E)-3-Hydroxy-1-propenyl)-2methoxyphenol, N-(4-ethoxy-3-hydroxyphenyl)-, Piperidine, Acetamide, 1-cyclohexyl-, 1.2-Benzene dicarboxylic acid, butyl octyl ester, 1-Naphthaleneacetamide, Naphthalene, 1-methyl-, 5-Ethyl-3,4-dimethyl-1H-pyrano[2,3-c]pyrazol-6-one, 5,6-Dimethoxy-1-indanone, Naphthalene, 1H-Purine-2,6-dione, 3,7-dihydro-8-(hydroxymethyl)-1,3,7-trimethyl-, 3-Naphthalen-2-yl-3-piperidin-1-yl-propan-1-ol, 13-Docosenamide, (Z)-.

No.	RT	Name of the compound	Molecular formula	Molecular Weight	Peak area %	Structure	Biological activity
1.	3.766	2-Propanone, 1,3- dihydroxy-	С3Н6О3	90	1.85	OH OH	It is used to make plastic, fibers, drugs, and other chemicals.
2.	7.362	Butyrolactone	C4H6O2	86	2.92		antioxidant and analgesic activities
3.	4.282	Cyclohexanone	С6Н10О	98	4.24		Anti-microbial agents
4.	7.362	2,4-Dihydroxy-2,5- dimethyl-3(2H)- furan-3-one	C6H8O4	144	1.48	Но о	flavor compounds in many fruit
5.	4.622	Formic acid, butyl ester	C5H10O2	102	3.22		antibacterial agent
6.	4.282	4H-Pyran-4-one, 2,3-dihydro-3,5- dihydroxy-6- methyl-	С6Н8О4	144	5.34	но он	antibacterial activity
7.	5.262	IsosorbideDinitrate	C6H8N2O8	236	5.22		therapy of heart failure

Table: 4 GC MS analysis of callus extract with methanol of <i>Canthium parvi</i>	florum
--	--------

8.	2.264	1,2,3-Propanetriol,	C5H10O4	134	4.48	0	Anti fungal
		monoacetate				но	
9.	3.766	Piperidine, 1- (ethoxymethyl)-	C8H17NO	143	5.45	OH	anticoagulant activity
10.	3.766	IsosorbideDinitrate	C6H8N2O8	236	2.662		decrease of blood pressure, angina pectoris
11.	8.726	DL-Arabinose	C5H10O5	150	2.46	ноон	Antitumor
12.	4.762	2-Methoxy-4- vinylphenol	С9Н10О2	150	6.82	OH O	Antioxidant Antimicrobial Anti-inflammatory, Anticancer,
13.	4.882	Undecanoic acid, 11-amino-	C11H23NO 2	201	2.428	и ²	No activity reported

14.	4.624	Benzeneacetic acid, 2-nitro-	C8H7NO4	181	4.62	0.0	No activity reported
						of the second se	
15.	8.811	2,7-Dioxa- tricyclo[4.4.0.0(3,8)] deca-4,9-diene	C8H8O2	136	3.69		color cosmetic composition
16.	13.359	Diethyl Phthalate	C12H14O4	222	13.90	L_	Antimicrobial Antifouling
17.	19.045	d-Mannose	C6H12O6	180	1.86		Sugar moiety and Presevative
						но	
18.	3.766	D-Glucose, 6-O-α- D- galactopyranosyl-	C12H22O11	342	2.29		Sugar moiety and Presevative

19.	19.045	Phenol, 4-(3- hydroxy-1- propenyl)-2- methoxy-	C10H12O3	180	1.86	IN THE PARTY OF	antimicrobial activity antiviral, anti- inflammatory, cytotoxic activity, antimutagenic and anticarcinogenic
20.	4.220	Piperidine, 1- cyclohexyl-	C11H21N	167	1.86		activities, Antioxidant . allergic or inflammatory disorders such as asthma
21.	4288	1,2- Benzenedicarboxyli c acid, butyloctyl ester	C20H30O4	334	4.24		antimicrobial cytotoxicity antioxidant
22.	6.224	Naphthalene, 1- methyl-	C11H10	142	4.60		fungicidal, antimicrobial
23.	3.7661	5,6-Dimethoxy-1- indanone	С11Н12О3	192	2.24		Antioxidative
24.	18.22	1H-Purine-2,6- dione, 3,7-dihydro- 8-(hydroxymethyl)- 1,3,7-trimethyl-	C9H12N4O 3	224	4.62		antitubercular, fungicidal, antiallergic, antimicrobial, antitumor, antihistamic

25.	20.34	3-Naphthalen-2-yl- 3-piperidin-1-yl- propan-1-ol	C18H23NO	269	6.99		fungicidal, antimicrobial
26.	23.967	13-Docosenamide, (Z)-	C22H43NO	337	7.69	-Lanna	antimicrobial, antioxidant and antiinflammatory properties

1,2-Benzenedicarboxylic acid Used as Softeners, Used in preparation of perfumes and cosmetics.¹⁸ Naphthalene is well known for its antimicrobial activity.^{19,20}The phenolic compounds are known to be synthesized by plants in response to microbial infection. It is therefore possible that they can act as effective antimicrobial substances against a wide array of microorganisms. Among the identified compounds phenol, 4H-pyran-4-one, 1,2-benzene dicarboxylic acid, octadecanoic acid have the antibacterial activity asreported by earlier workers.²¹

Discussion

In recent years, the interest for the study of the organic compounds from plant callus extracts and their activity has increased. The combination of an ideal separation technique (GC) with the best identification technique (MS) made GC–MS an ideal technique for qualitative and quantitative analysis for volatile and semi-volatile compounds. The aim of the present study was to develop a rapid method for the quantitative determination of organic compounds in plant callus extracts and to confirm the phytochemical present in the wild plant extracts and co relation of the presence of compounds and to know the differentiation.

Canthium parviflorum ethyl acetate callus extracts are contained 1,2-Benzenedicarboxylic acid and its used in synthesis of dyes and perfumes; neurodegenerative disorders. The result of the present investigation reveals that the methanolic extracts of *Canthium parviflorum* possessed significant anticancer activity which was analyzed by GC-MS analysis. Different phytochemicals have been found to have a broad range of activities, which may help in protection against chronic diseases.

Conclusion

Canthium parviflorum callus extracts are contained various phytochemicals with biological activity can be of valuable therapeutic key. The GC-MS analysis of the ethyl acetate and methanolcallus extract of *Canthium parviflorum* reveals the presence of phytoconstituents. The presence of such a variety of phytochemicals may be attributed to the medicinal characteristics of this plant *Canthium parviflorum* callus extract. The presence of phyto-components reveals the importance of the plant as medicinally used. Further investigations are planned to conduct the pharmacological studies to know the potency of these extracts. So, it is recommended as a plant of phyto - pharmaceutical importance.

Acknowledgements

The first author **Dr.Sirigiri Chandra Kala** is thankful to University Grants Commission, New Delhi forproviding financial supports with **Post Doctoral Fellowship**.

References

- 1. Sirigiri Chandra kala. A Review on Phytochemical analysis by using callus extracts of important medicinal plants. Indo American Journal of Pharm Research.2014,4:07, 3236-3248
- 2. Sirigiri Chandra Kala, Kokkanti Mallikarjuna, PatchalaAruna and Muvva Vijayalakshmi. Antimicrobial screening of callus extracts of *Canthium parviflorum* LAM. International Journal of Medicine and Pharmaceutical Sciences, 2015, 4:1, 1-10.
- 3. Sirigiri Chandra Kala,Kokkanti Mallikarjuna,Naragani Krishna."An Efficient Protocol Devised for Rapid Callus Induction from Leaf Explants of *Canthium parviflorum* Lamk" International Journal of Pharmaceutical Sciences Review and Research 2014; 25(1): 111-113
- 4. Chandra Kala, S., Mallikarjuna, K, and Aruna, P. (2012). "Qualitative Phytochemical Analysis of Seed and Leaf Callus Extracts of *Canthium parviflorum* Lamk." Guntur District, Andhra Pradesh. Int. J. Pharm.Bio. Sci. 2012 Oct 3(4): 177-182.
- 5. Wealth of India. A Dictionary of Indian Raw Materials and Industrials Products Raw Materials, Revised Series, Ca-Ci, Publications & Information Directorate, CSIR, New Delhi, India.1992,3;p.210.
- 6. Warrier PK, Nambiar VPK and Raman Kutty C. In: *Indian Medicinal Plants*, Orient Longman Publishers Ltd. Madras.1994. I; 366.

- 7. Ayyanar M, Sankarasivaraman K. and Ignacimuthu S. Traditional Herbal Medicines used for the treatment of Diabetes among two major tribal groups in south Tamil Nadu, India. EthnobotanicalLeaflets.2008,12;276-280.
- 8. Kirtikar KR. and Basu BD. Lalit Mohan Basu, Allahabad, India, Indian Medicinal Plants, 2001.1; 35-45.
- 9. Murashige T. and Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. *Plant Physiol.* 1962. 150; 473-497.
- 10. PurushothPrabhu.T, Panneerselvam.P, Suresh.R, Clement Atlee.W, Balasubramanian.S. GC-MS analysis of ethanolic extract of *Canthium parviflorum* Lamk Leaf. Journal of Applied Pharmaceutical Science 2013, 3(02), pp.166-168.
- 11. Suriyavathana Muthukrishnan, SumathiSelvaraj, KavithaRaniMari. Phytochemical Characterization Using Various Solvent Extracts and GC-MS Analysis of Methanolic Extract of *Canthium coromandelicum (Burm. F)* Leaves. International Journal for Pharmaceutical Research Scholars. 2014, 3:3, 178-185.
- 12. Gunasekaran S, Vijay T, Sarumathyd K, Palanie S, Panneerselvam B. and Srinivasan V. Phytoconstituents evaluation by GC-MS and therapeutic efficacy of *Grewiaum bellifera*on streptozotocin (STZ)-induced diabetic rats. International Journal of Pharmacy and Lifescience. 2013. 4; 2380-2386.
- 13. Gunstone, FD, John L, Harwood T. and Albert, J.D. The Lipid Handbook. 2007. 3rd Ed. Boca Raton: CRC Press.
- 14. BergssonG, J Arnfinnsson, O Steingrímsson and H Thormar. Int. J. Antimicrobial Agents. 2002. 20; 258-262.
- 15. Jun L, Stefan W, Chunlin X. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical application. *Bioactive Carbohydr*. Diet Fibre, 2015. 5;(1):161
- 16. Watanabe M,OhshitaY,Tsushida T. Antioxidant compounds from buckwheat (Fagopyrum esculentummöench) hulls. J. Agric. Food Chem. 1997. 45; 1039–1044.
- 17. Ghosh T, Maity T K & Singh J. Evaluation of antitumor activity of stigmasterol, a constituent isolated from *Bacopa monnieri* Linn aerial parts against Ehrlich Ascites Carcinoma in mice. Oriental Pharmacy and Experimental Medicine, 2011, 11(1); 41–49.
- 18. SelvaraniK and G. Viji Stella Bai. GC–MS analysis of biologically active compounds in *Cayratia pedata*(lam) leaf and callus extracts. International Journal of Chemical Studies.2014, 2; 3, 51-56.
- 19. Rokade YB and Sayyed, R.Z. Naphthalene derivatives: a new range of antimicrobials with hightherapeutic value. Rasayan Journal of Chemistry. 2009,2; 972-980.
- 20. Sethi A, Prakash R., Amandeep SD, Bhatia A. and Singh RP. Identification of phytochemical constituents from biologically active ether and chloroform extracts of the flowers of *Allamanda violacea* A.DC (Apocynaceae). Pelagia Research Library. 2013,3; 95-108.
- 21. Manas Mathur and Raka Kamal. Studies on trigonelline from Moringa oleifera and its in vitro regulation by feeding precursor in cell cultures Brazil.J. Pharm.,2012,22(5): 994-1001.