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Abstract : Nowadays, the fractional differential calculus has been applied to the study of 

dynamic systems. Chaos has been observed in many fractional-order systems, so when a 
fractional-order system is chaotic and how to synchronize the fractional-order chaotic systems 

have been two very important problems. In the present manuscript, the author studied the 

complex Lorenz system which a fractional-order system may exhibit a chaotic behavior could 
only be analyzed by simulation results. This paper applies the stability theory of fractional-

order systems in their dynamic analysis and obtains some useful conclusions. When it comes 

to the synchronization problems, active control method has been studied. 
Keywords: Chaos synchronization, Complex chaotic system, Fractional derivative, 

Fractional-order complex Lorenz system, Active control method. 
 

1. Introduction 

The idea of fractional calculus has been known since the development of the regular calculus, with the 
first reference probably being associated with correspondence between Leibniz and L’Hospital in 1695, where 

the meaning of derivative of order one half was discussed [1]. Although fractional calculus has a 300-year-old 

history, its applications to physics and engineering are just a recent focus of interest. It was found that many 
systems in interdisciplinary fields can be elegantly described with the help of fractional derivatives. Many 

systems are known to display fractional-order dynamics, such as viscoelastic systems [2], dielectric polarization 

[3], electrode-electrolyte polarization [4], electromagnetic waves [5], quantitative finance [6] and quantum 

evolution of complex systems [7].Chaotic regions are found in a wide scope of parameter space. Different 
motions along the routes to chaos are analyzed and depicted by bifurcation diagram, LLE and phase portrait. 

From the point of view of stability theory of the fractional-order system, a new way is discussed to search the 

lowest order in fractional-order system. 

Since the synchronization of chaotic dynamical systems was observed by Pecora and Carroll [8] in 

1990, theoretical as well as experimental research on chaos synchronization has been carried out in a variety of 
nonlinear dynamic systems. It is because chaos synchronization can be applied in vast areas of physics, 

engineering science, and in particular in secure communication. A variety of approaches have been proposed for 

the synchronization of chaotic systems, such as complete synchronization [9], anti-synchronization[10], 

generalized synchronization [11] and projective synchronization [12]. 

However, until now, all of the studies about fractional-order systems had been based on the state 

variables in real space, and complex systems are not involved. It is known that complex systems can be widely 
applied to describe a variety of physical phenomena, such as detuned laser systems, amplitudes of 

electromagnetic fields, and thermal convection of liquid flows [13–15], etc. In recently years, many research        
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results have been proposed about the dynamic properties in real space and complex space [16–23]. So it is an 

interesting and meaningful topic for researchers to explore the dynamic behaviors in fractional-order complex 

nonlinear systems. 

Motivated by the above discussion, in this article, the fractional-order complex Lorenz system as a 

novel dynamic system is firstly proposed. Dynamic behaviors are numerically investigated with varying the 

system parameters and the fractional derivative orders. Based on the above results, furthermore, chaos 
synchronization in fractional-order complex Lorenz systems is studied. 

2. Fractional derivative and its definitions 

Fractional calculus is a generalization of integration and differentiation to a non-integer order integro-

differential operator 
ta D  which is defined by 
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where is the derivative order, which can be a complex number,  R is the real part of  . The 

numbers a and t are the limits of the operator. There are many definitions for the general fractional derivative. 

The three most frequently used ones are: the Grunwald-Letnikov definition, the Riemann-Liouville and the 
Caputo definitions. 

The Grunwald–Letnikov (GL)definition derivative with fractional-order is described by 
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where the symbol   means the integer part. 

The Riemann–Liouville (RL) definition of fractional derivatives is given by 
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where nn  1   and   is the gamma function. 

The Caputo (C) fractional derivative is defined as follows: 
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where nn  1   and   is the gamma function. 

It is well known that the initial conditions for the fractional differential equations with Caputo 

derivatives take on the same form as those for the integer-orderones, which is very suitable for practical 

problems. Therefore, author use the Caputo definition for the fractional derivatives in this paper and notation 
D for 

t

C

a D . 

 

 

3. The fractional-order complex Lorenz system (FOCLS) 

Flower et al. introduced the complex Lorenz system [24], and its dynamical property was studied by 
Mahmoud et al. [25]. This system is useful to describe and simulate the physics of liquid flows. The integer-

order complex Lorenz system is expressed as 
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where Txxxx ],,[ 321
 is the state vector variable, 211 ixxx  and 432 ixxx  are complex variables while 

53 xx  is real variable and 1i . In system (5), 1a is the Prandtl number, 2a is the Rayleigh number and 3a is 

the size of the region approximated by the system. 

The FOCLS is given by 

,)( 1211 xxaxD 

 
,312122 xxxxaxD 

 

.)(
2

1
3321213 xaxxxxxD   (6) 

4. Dynamic analysis of the FOCLS 

In this section, the dynamic analysis of the FOCLS will be investigated, including real version, 

symmetry and invariance, equilibrium points, stability and chaotic attractors of system (6). 

4.1 Real version 

Since the Caputo fractional derivative operator (4) is linear, the system (6) can be written in real version 

as 

,)( 1311 xxaxD 

 
,)( 2412 xxaxD 

 
,513123 xxxxaxD 

 
,524224 xxxxaxD 

 
.5342315 xaxxxxxD   (7) 

4.2 Symmetry and invariance 

Symmetry about 5x axis, due to the invariance of equations under the change 

,( 1x ,2x ,3x ,4x )5x  ,( 1x ,2x ,3x ,4x )5x . Hence, if ,( 1x ,2x ,3x ,4x )5x  is a solution of chaotic system (7), 

then  ,( 1x ,2x ,3x ,4x )5x is also a solution of the same system (7). 

4.3 Equilibrium points 

The equilibrium points of system (7) can be calculated by solving the equations ,0jxD j  ,1 ,2 ,3 ,4 5 and 

system (3) have an isolated equilibrium point 0E  ,0( ,0 ,0 ,0 )0  and nontrivial equilibrium points 

E  ,cos( r ,sinr ,cosr ,sinr ,)5x where r  ,53xa 5x  ,12 a  .2,0   It is obvious that the nontrivial 

equilibrium points exist when 12 a . 

 

 

4.4 Stability 

As to the equilibrium 0E , it is stable when 12 a and unstable when 12 a . For ,E  the characteristic 

polynomial of Jacobian matrix when 12 a  is 

         .01211 2313231

2

31

3

1  aaazaaaazaazazz   (8) 
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According to the fractional-order Routh–Hurwitz conditions [26], when 

      ,121 231323131  aaaaaaaaa   (9) 

E will be stable. But one should note that the condition of inequality (9) is sufficient but not necessary. 

According to the stability theory of fractional-order systems, the stability region of fractional system is bounded 

by a cone with vertex at the origin, and extends into the right half of the s -plane such that it enclose an obtuse 

angle )2/2,2/(   , where fractional derivative order 10  . So when one of eigenvalues of equation 

(8) is in the right half-plane but inside the stability region, the fractional-order system is stable, whereas the 

corresponding integer-order system is unstable. 

4.5 Chaotic attractors 

When we take the parameters value ,101 a ,1802 a 13 a  and initial 

condition  )0(x
Tii ]9,65,32[  , the system (7) possesses the chaotic attractors which are described by Fig. 1 

at fractional-order 95.0 . 
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Fig. 1 Phase portraits of the FOCLS. 

5. Chaos synchronization of the FOCLS 

In this section, chaos synchronization of the FOCLS discussed. Let us define the system (7) as a drive 

system. Then response system with control function 
Ttutututututu )](,)(,)(,)(,)([)( 54321  is given by  

,)( 11311 uyybyD   

,)( 22412 uyybyD 

 
,3513123 uyyyybyD 

 
,4524224 uyyyybyD 

 
.55342315 uybyyyyyD         (10) 

In order to estimate the control functions ),(1 tu )(2 tu , )(3 tu , )(4 tu  and )(5 tu , let us define the error 

functions between the system (10) and the system (7) as 

555,444,333,222111 ,,,, xyexyexyexyexye    (11) 

One can get the error system as follows 

,))(()( 113111311 uxxabeebeD   

,))(()( 224112412 uxxabeebeD   

,)( 31551511223123 uxexeeexabeebeD 

 
,)( 42552522224224 uxexeeexabeebeD   

.)( 5244213314231533535 uxexexexeeeeexbaebeD               (12) 

Defining the active control functions )(tu j as 
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),)(( 131111 xxabVu   

),)(( 241122 xxabVu   

,)( 15515112233 xexeeexabVu   
,)( 25525222244 xexeeexabVu   

,)( 24421331423153355 xexexexeeeeexbaVu           (13)
 

where the terms )(tV j  are linear functions of the error terms .)(te j
Now, the error system (12) is reduced to  

,)( 11311 VeebeD   

,)( 22412 VeebeD   

,33123 VeebeD 

 
,44224 VeebeD   

.5535 VebeD  (14) 

Let us design an appropriate feedback control which stabilizes the system so that 

)(te j , j  ,1 ,2 ,3 ,4 5 converge to zero as time t  becomes large. There are many possible choices for the control 

inputs ).(tV j We choose ,)()( teAtV  where  TtVtVtVtVtVtV )(,)(,)(,)(,)()( 54321 , A  is 55  constant matrix 

and  Ttetetetetete )(,)(,)(,)(,)()( 54321 . In order to make the closed loop system stable, the matrix should be 

selected in such a way that the feedback system has eigenvalues j of A satisfy the condition 2)arg(  j , 

j  ,1 ,2 ,3 ,4 5 . There is no unique choice for matrix .A Let the matrix A is chosen in the form 
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In this particular choice, the error system (14) becomes 

,jj eeD 
j  ,1 ,2 ,3 ,4 5 (15) 

The closed loop system (15) has the eigenvalues -1, -1, -1, -1 and -1. This choice will lead to the error states 

),(te j
j  ,1 ,2 ,3 ,4 5 converge to zero as time tends to infinity and thus the synchronization of the FOCLS 

achieved. 
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Fig. 2 State trajectories of the drive and response systems. 

5.1 Simulation Results 

In this section, to verify and demonstrate the feasibility of chaos synchronization of the FOCLS, author 

obtains the simulation results of the considered systems in complex space at the 
fractional-order .95.0  

During synchronization, the values of the parameters remain unchanged. The initial conditions are taken as 

 Tii 9,65,32   and  Tii 10,88,97  hence the initial error is  Tii 1,23,65  . Figure 2 display the 

time response of the states )(tx j and )(ty j of the drive system (7) and the response system (10). Figure 3 shows 

that the error vectors asymptotically converge to zero as time becomes large which implies that chaos 

synchronization of the FOCLS. 
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Fig. 3 Error plot of drive and response systems. 

6. Concluding remarks 

The authors have successfully used the active control method to achieve perfect control of a pair of 

FOCLS along a desired trajectory, which clearly exhibits the reliability and potential of the method even for 
fractional order complex systems to be synchronized. The most important part of the study is the dynamical 

behavior of the FOCLS is investigated.  
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