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Abstract : Casein polysaccharide interaction can be associative or seggregative thereby this 

interaction can improve stability or induce destabilization. The interaction of casein with 

several anionic, cationic and nonionic polysaccharides such as carrageenan, pectin, 
carboxymethilcellulose (CMC), gum, chitosan, inulin and glucomannan in aqueous solutions 

can be interacting to each other, or noninteracting each other. The attractive interactions 

between casein and polysaccharides mainly contribute to stabilize food emusion. 

Casein micelles especially  Casein molecules stabilize the casein micelles via electrostatic 
interaction and steric stabilization.  Casein adsorbed into oil-water interface to stabilize oil 
droplet by the combination of steric stabilization and electrostatic interaction. However, 

emulsions  that stabilized by casein at pH < pI are less stable than those at pH > pI. 

Destabilisation of emulsion occurs through bridging flocculation or depletion flocculation. If 

the repulsive and steric stabilization layer is damaged or collapses, Van der Waals interactions 
appear and the casein micelles form aggregate. 

The adsorbing macromolecules such as charged polysaccharides will stabilize oil-water 

emulsions via steric and electrostatic stabilization. The non-adsorbing macromolecules  such 
as uncharged polysaccharides will stabilize the emulsions via  depletion stabilization when the 

non-adsorbed polymer is in sufficient amount. Casein-polysaccharides layer formation at the 

oil water interface in continuous aqueous phase, mainly contribute to the emulsion stability of 
food products. 

 

Introduction 

Polysaccharides and proteins in aqueous solutions can be non-interacting to each other, or can 

interacting each other (attract or repulse)
[1]

. The attractive interactions between proteins and polysaccharides in 
many ways

[2]
 : covalent linking, ionic and hydrogen bonding, hydrophobic and van der Waals interaction, and 

physical entanglement
[1]

.  

Two main types of polysaccharide and proteins interactions: 
[2]

: (i) strong association – irreversibly 

bonding of proteins to polysaccharides or strong electrostatic complexes; (ii) weak association – potentially 

reversible, includes non-ionic and weak electrostatic complexes
[1]

. 

Electrostatic interactions  play a predominant role with charged polysaccharides. Strong attractive electrostatic 

complexes are commonly formed between positively charged proteins (pH < pI) and anionic polysaccharides. 

Weaker reversible complexes can be formed between anionic polysaccharides and proteins carrying nearly zero 

overall charge (pH pI) or a net negative charge (pH > pI)
 [3]

. 
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Destabilisation of emulsion occurs through bridging flocculation at low polysaccharide  concentration 
or depletion flocculation at extremely high polysaccharide concentration 

[4,5,6]
. Depletion flocculation at 

polysaccharide attributed to the presence of anionic polysaccharides that unadsorbed in the aqueous phase of the 

emulsion
[4,7]

. 

Casein as casein micelles, ie monomer complex over the calcium phosphate bridge 
[8]

  (Bouzid et al., 

2008), phosphorylated at clusters of serine residues
[9]

. Casein micelles stability due to hydrophobic interactions 

and Ca-phosphate salt bridges
[10]

. The linkage between Ca-P colloidal and the structure of casein is due to a 
series of phosphoserine residues 

[11]
. Casein will precipitate at low pH, because its solubility is lower in acid 

conditions
[12]

. 

Casein micelles is colloidal structure that contain αs1, αs2, β and casein and roughly 200 nm in 

diameter
[13]

. Casein molecules stabilize the casein micelles from aggregation, it protrude roughly 5 nm out 

from micelle surface 
[14]

. -Casein form an entropy-rich brush at the surface of casein micelles ensuring the 
steric stabilization 

[15]
.  

Sodium-caseinate adsorbed into oil-water interface to stabilize droplet by the combination of steric 

stabilization and electrostatic interaction 
[16]

. However at pH 4.6 or near pI, the ability of sodium-caseinate to 

stabilize the emulsion is not stable, it may be  attributed to casein aggregation and presipitation and the 
decreasing of electrostatic repulsion between oil droplet 

[17]
. 

The distribution and composition of protein charges on the micelles surface appear to generate a  
repulsive barrier which contributes to the micelles stability in suspension. Thus, if the repulsive and steric 

stabilization layer is damaged or collapses, Van der Waals interactions appear and the casein micelles aggregate 
[18] 

. 

The adsorbing macromolecules will stabilize oil-water emulsions via steric and electrostatic 

stabilization. The non-adsorbing macromolecules  will stabilize the emulsions via  depletion stabilization when 

the non-adsorbed polymer is in sufficient amount 
[1]

. 

According to such an approach one must find out for any casein-polysaccharides layer formation at the 

oil water interface in continuous aqueous phase. Both caseins and polysaccharides contribute to the emulsion 
stability of food products. It is therefore of interest to review the interaction between casein and 

polysaccharides.  

Casein polysaccharide interaction 

Casein-carragenan interaction 

-Carrageenan have negatively charged,  linear and sulfated galactan polysaccharide 
[19,20]

. Gelation of 

k-carrageenan formed when helical -carrageenan become aggregate 
[21]

. -Carrageenan heating in solution at 
50°C or higher, it exists as a random coil, then the temperature is lowered make k-carrageenan become a helix 

and subsequent  aggregate become gel 
[22]

.   

k-Carrageenan will interacts with casein micelle surface  when k-carrageenan in the helix form to 
inhibit separation of phase 

[23]
, via electrostatic interaction between positively charged of k-casein and 

negatively charged of k-carrageenan, thus k-carrageenan adsorb to the surface of casein micelle 
[24,25,26]

   or via 

weak gel formation of -carrageenan that bind the casein micelles 
[27]

. 

The casein micelles have 250 nm diameter, the surface rather porous and protrude 10–20 nm into 

solution
[23]

. Carrageenan have 20 nm diameter. If carrageenan and casein micelle were mixed carrageenan 
adsorb at the surface of casein micelles. Bridging between casein micelle surface and association among 

micelles by the strands 
[23]

. -Carrageenan increase casein micelle diameter, it is may be due to adsorption and 

interaction between casein micelle with -carrageenan 
[28]

. 
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Casein-CMC interaction 

Carboxymethylcellulose (CMC) is a linear β-(1,4)-linked D-glucopyranose chains and anionic 

carboxylate 
[29,30]

. At below 5.2  CMC adsorbed on casein micelles surface formed steric stabilization to prevent 
–induced casein aggregation

[31]
. CMC addition on excess amount to neutral  Casein-stabilised emulsions could 

result in depletion flocculation by non-adsorbed polysaccharides 
[4]

. 

CMC have ability as a stabilising agent to avoid the milk protein flocculation in acidified milk drinks. 
At pH below 5.2, CMC adsorbed on the layer of casein micelles surface  and electrostatic interaction between 

CMC and casein micelles induced steric stabilisation can prevent acid-induced casein aggregation by steric 

stabilisation
[31]

. However, depletion flocculation can take place when excess CMC addition to neutral casein-
stabilised emulsions and non-adsorbed polysaccharides formed 

[4].
 

The CMC binding to casein surface  due to the electrostatic attraction between the positively charged 
domain on casein micelles and anionic groups on the CMC molecules. The emulsion that stabilized by protein if 

acidified to pH 4 and CMC adding, caused adsorption of negativel charged of CMC on the surface of cationic 

protein-coated droplets. At neutral pH (pH 7), both casein and CMC were negative charge. At pH near casein 

pI, interfacial layers can be formed by direct adsorption of casein at droplet interfaces as primary layer  and 
secondary layer that formed by CMC molecules that attract to casein layer electrostatic interactions

[32]
. 

The formation of casein/CMC complex at oil–water interfaces during acidification can prevent the oil  
droplets against flocculation and coalescence. This stability was mainly attributed to the increasing of steric 

repulsion as well as the decreasing of van-der-Waals attraction between oil droplet and the thickening of the 

interfacial layer
[32]

. 

The electrostatic interactions between CMC and casein-stabilised emulsions can be effective when the 

interaction under optimum condition.  At pH 4–5 CMC adsorbed onto the surface casein-coated droplets, but 

not at pH 6–7.  At neutral pH,  the excess of nonadsorbed CMC in the emulsion system induced depletion 
flocculation. However, at acidic pH emulsions containing high concentration of CMC (>0.3 wt.%) the emulsion 

remained stable during storage may be due to the formation of multilayer structures
[32]

. 

Casein-pectin interaction 

Pectin is an anionic polysaccharide 
[33] 

composed of homogalacturonan (HG), rhamnogalacturonan I 
(RGI) and rhamnogalacturonan II (RGII) 

[34]
. Methylesterified galacturonic acid units and galacturonic acid 

content ratio is given by the degree of methylesterification (DM) and determines how pectin interacts with other 

molecules. 

Pectin commonly used as a „stabilizer‟ in acid milk drinks where it inhibits this precipitation; and as a 

„thickener‟ in other dairy desserts, where it has been assumed to form a gel in the serum aqueous phase
[33]

. At 

pH < 5.3, charged region of pectin absorbed on casein micelles surface via electrostatic interactions to prevent 
from flocculation and stabilize the acid milk drink 

[35,36]
, while the other parts of pectin molecule protrude to 

solution as loop and tails
[37]

. 

At pH 6.7, pectin induced a depletion flocculation of the casein micelles may be due to the exclusion of 

pectin from the space between casein micelles. At pH 5.3, pectin adsorbs onto casein micelles surface; at low 

content of pectin formed a bridging flocculation. On the increasing of pectin content,  casein micelles become 
fully coated and lowered attraction between casein and pectin, segregative phase separation may be attributed to 

non-adsorbing pectin. On the increasing of pH from 5.3 to 6.7, pectin desorbs 
[35]

. 

A sufficient pectin concentration is needed to impart a negative charge of casein surface, to stabilize 
acidified dairy drinks, and the critical pectin concentration depends on pH, ionic strength and other factors

[38,39]
. 

If pectin concentration is insufficient, caused bridging flocculation and if pectin concentration is too high 

caused excessive viscosity or phase separation
[40]

. 

Adsorption of pectin onto casein micelles surface by electrostatic interaction creates a net  negatively 

charged of the complex, which is dispersed by electrostatic repulsion and steric stabilization
[36]

.  -Casein is 
more sensitive than β, αs1, αs2 casein  to charge modified pectin. Pectin adsorption onto the casein micelle 
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surface has presumptively involved -casein, but there is specific affinity between -casein  and charge 
modified pectin

[41]
.  

Casein-glucomannan interaction 

Glucomannan consist of D- glucose and D-mannose have molar ratio 1 : 1.6 with β –(1-4)glicosidic 
binding and approximately 1 acetyl group in each 17 residue at C-6 position

[42]
. Glucomannan as neutral 

polysaccharide and milk protein thermodynamically was incompatible
[43]

, caused segregative phase separation, 

attributed to segregative interaction between casein and glucomannan
[44,45]

.  

Glucomannan-lactic acid complex and -casein binding indicated at hydrophobic core of -casein. The 

binding of glucomannan molecule to -casein dominated by hydrogen binding and hydrophobic group. Binding 

energy between glucomannan-lactic acid complex which heated at 90°C and -casein higher than glucomannan-

lactic acid in water solution without heating, this result attributed with higher hydrogen binding capacity 
formed

[46]
.  

The complex of glucomannan-lactic acid more favorable to bind -casein than glucomannan only, it 
means the glucomannan and lactic acid can make complex easily than glucomannan only. Glucomannan bind to 

-casein using hidrogen bonding and hydrophobic interaction for stabilizing the complex. The interaction is 

different when lactic acid include in the complex. Glucomannan-lactic acid complex bind to -casein and the 
complex was stabilized by hydrogen bonding and hydrophobic interaction. Lactic acid is important to mediate 

interaction between glucomannan and -casein
[46]

.   

Casein-dextran interaction 

Dextran consisting of α-1.6 d-glucose and α-1.3 d-glucose unit
[47]

 . Maillard reaction was used to 
modify dextran via grafting of  dextran to β-casein to improve  casein solubility in acidic pH. During the mixing 

of dextran with β-casein solutions, the temperature was kept at 0 ◦C to stabilize casein in monomer state
[48]

.  

The emulsifying activity of αs-casein–dextran was 1.5 times higher than t αs-casein, and the emulsion stability 
of the αscasein–dextran was 10 times higher than that of αs-casein at pH 7.4

[49,50]
.  The solubility of β-casein 

and dextran mixture is the same as of individual β-casein, implying that dextran does not increase casein 

solubility. 

The Maillard reaction  that conjugates protein and polysaccharide by linking the reducing end of the 

polysaccharide to the amines in the protein (terminus and amino group of lysine), has been made to improve 

proteins  functionality. Copolymer of  casein and dextran through the Maillard reaction has a reversible pH-
sensitive property 

[51]
. 

Casein-chitosan interaction 

Chitosan, a positively charged polysaccharide comprising copolymers of glucosamine and N-

acetylglucosamine
[52]

, it has been used as stabilizing,  emulsifying and thickening agent 
[53]

. Caseins contain 

electronegative hydrophilic and neutral hydrophobic regions. On the other hand, chitosans show positively 
charged hydrophilic domains containing approximately 80% glucosamine and neutral hydrophobic domains 

containing 20% N-acetylglucosamine
[54]

.  

The electronegative domains in casein micelles made it developing to explore chitosan addition on 

casein stability, chitosans can promote casein coagulation
[54]

. The mixing milk with the chitosan induced casein 

aggregation and coagulation without milk pH change 
[54]

. Precipitation of milk casein micelles with the 
polycationic chitosan involved electrostatic and hydrophobic interactions and does not depend on the casein 

micelles structural integrity
[54]

. 

Chitosan is a hydrolyzed derivative of chitin
[55]

, amine groups of chitosan are mostly protonated in 

acidic solutions 
[56]

. Chitosan is only soluble in acidic pH and insoluble in neutral and alkaline pH. The amine 

groups are protonated at pH < 6 and positively charged and chitosan is soluble in water. At high pH, amine 

groups become deprotonated  and the polymer loses its charge and therefore insoluble in water
[57]

. Chitosan and 
Oppositely charged electrolytes will interact to form an insoluble precipitate. 
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At pH 7, casein have negative charge but chitosan is deprotonated whereas, at pH 10, negative charge 
of casein more than at pH 7 making interaction the hydrogen bonding of casein with alcohol and amine groups 

of chitosan stronger, leading to better attraction between the polymers 
[58]

.  At pH 4,  the amine groups of 

chitosan are protonated and acquire positive charge
[57]

. Casein also acquire a net positive charge, since the 

isoelectric point is 4.6, leading to electrostatic repulsion between the two polymer chains
[59,60]

. Electrostatic 
interaction of the negatively charged casein protein with positively charged chitosan resulted in the formation of 

an insoluble phase, which is due to  chitosan/casein coacervation formation
[61,62]

.  

Chitosan was derived from chitin and abundance in  OH and NH2 groups
[63]

. Chitosan and casein 

phosphopeptides (CPP) were utilized to produce stable multi-layer coatings. Following chitosan deposition, 

CPP was sequentially adsorbed on the chitosan tail through bonding CPP to the chitosan free NH2 groups
[64]

.  

Casein-starch interaction 

The casein adsorbed starch via electrostatic attraction, the starch granule surface changed to positive 

charged. The casein aggregates surface and starch micelles are positive result in electrostatic repulsion. Steric 

stabilization formed by  blocks of low affinity areas on casein may protrude from the starch micelles surface 
[65,66,67,68]

 . Sodium caseinate adsorp to both normal and waxy rice starch granules (Noisuwan, Bronlund, 
Wilkinson, and Hemar (2008). Casein absorb on the HPDSP surface via electrostatic forces, the stability of 

modified starch is the result of “electrostatic repulsion” and “steric stabilization”
 [70]

. In yoghurt system (pH 

3.8), casein particles absorb on acetylated starch or hydroxypropyl distarch phosphate (HPDSP) surface via 
electrostatic forces 

[67,71,72]
.  

Casein-gum interaction 

Portulaca oleracea gum (POG)  is a charged hydrocolloid with low protein content (3.1 wt%) and 

relatively low molecular weight 
[1]

.   POG  consists of d-galactose : l-arabinose : d-galacturonic acid : d-xylose : 

l-rhamnose  at  40 : 20 : 5 : 1 : 31 ratio with O–CH3 groups attached to its sugar moieties. The POG has a 
structural possibility to form both hybrids and complexes with proteins 

[73,74,75]
. 

POG adsorb onto the oil–water interface by itself or together with casein. Displacement of POG by 
casein from the interface, will take place at pH values that will increase repulsion forces between POG and 

casein
[1]

. Both POG and casein can be anionic (pH > pI) or noncharged (pH < pI) water-soluble biopolymers, 

therefore, pH determined both strong and weak associative structures. POG is weakly adsorbing biopolymer 
while casein is strongly adsorbing macromolecule 

[1]
. If the pH value is increase attraction force resulted 

complementary adsorption of casein-POG complex will enhance  oil-in-water emulsions stability. 

Casein have excellent emulsifying ability, at a pH > pI casein will compete with the POG on the 
interface  if added simultaneously or consecutively to the POG. Displacement of the POG more intensive when 

the casein/POG ratio in the solution increases 
[1]

.  At low pH (pH < pI), emulsions prepared with POG more 

stable, indicating that significant steric stabilization occurs at low pH
[1]

. 

Casein Inulin interaction 

Inulin is a soluble fraction of fiber 
[76]

, composed of fructose units joined by β(2 / 1) glycoside bonds
[77]

. 

Inulin that belongs to a class of carbohydrate known as fructans
[78,79]

.   Inulin is a mixture of chain fructan that 

widely found in nature as a plant carbohydrate that can be classified as fructo-ligosaccharide 
[80]

. 

Melting properties of cheese was improved with inulin addition, it may be due to weak network 

formation between inulin with milk protein especially casein 
[81]

. Protein-protein interactions weakening in the 

casein network during melting which increased the viscosity
[79]

.   The higher ratio of casein modified:inulin 
result in  more porosity structure and swollen of Mozzarella cheese 

[82]
. Increasing inulin in modified 

casein:inulin ratio tend to decreased the cavity of  microstructure of mozzarella cheese analogue
[83]

.   
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Conclusion 

The interaction of casein with several anionic, cationic and nonionic polysaccharides such as 

carrageenan, pectin, carboxymethilcellulose (CMC), gum, chitosan, inulin and glucomannan in aqueous 
solutions can be interacting to each other, or noninteracting each other.  

Casein adsorbed into oil-water interface to stabilize oil droplet by the combination of steric stabilization 
and electrostatic interaction. However at pH near pI, casein formed aggregate and precipitate and the decreasing 

of electrostatic repulsion between oil droplet.  If the repulsive and steric stabilization layer is damaged or 

collapses, Van der Waals interactions appear and the casein micelles form aggregate. 

The adsorbing charged polysaccharides will stabilize oil-water emulsions via steric and electrostatic 

stabilization. The non-adsorbing uncharged polysaccharides will stabilize the emulsions via  depletion 

stabilization when the non-adsorbed polymer is in sufficient amount. Destabilisation of emulsion occurs 
through bridging flocculation or depletion flocculation. Casein-polysaccharides layer formation at the oil water 

interface in continuous aqueous phase, mainly contribute to the emulsion stability of food products.  
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