

International Journal of ChemTech Research

CODEN(USA): IJCRGG, ISSN: 0974-4290, IS

ISSN(Online):2455-9555 Vol.10 No.3, pp647-655,2017

ChemTech

Enhanced electrochemical properties in nanostructured β - MnO_{2,} synthesized through a single step auto-igniting modified combustion technique.

J.S Sherin^{1,3*}, M. Haris¹, D. Shiney Manoj², J. Koshy³ and J.K. Thomas³

¹Department of Physics, Karunya University, Coimbatore, India ²Department of Physics, Christian College Kattakada, University of Kerala, Thiruvananthapuram, Kerala, India ³Department of Physics, Electronic Materials Research Laboratory, Mar Ivanios college, University of Kerala, Thiruvananthapuram, Kerala, India

Abstract:Nanoparticles of manganese dioxide are prepared by an auto igniting combustion technique and its structural, morphological, optical, and electrochemical properties are investigated. The X-ray diffraction studies reveal that MnO_2 possesses phase pure tetragonal structure with space group of P_{cab} . The average particle size of the as-prepared nanoparticles obtained from both the Scherrer formula and scanning electron microscopy is ~30 nm. EDAX confirms the composition of MnO_2 . The UV-vis absorption spectra of the sample was obtained and the optical band gap calculated from Tauc's Plot is 3.25 eV. Electrochemical tests reveal that the sample has a high specific capacitance (320 F/g at 0.25 A/g) and good rate capability, which can be attributed to its unique structure. The capacitance retention reaches 89% after 1000 cycles at a current density of 3 A/g. These results show that manganese dioxide have great potential applications in supercapacitor electrode material.

Keywords:Combustion synthesis,supercapacitor, pseudo-capacitance,charge-discharge process.

J.S Sherin et al/International Journal of ChemTech Research, 2017,10(3): 647-655
