

International Journal of ChemTech Research

CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.3, pp 55-61, **2017**

Potential Crude glycerol from Transesterification WCO (Waste Cooking Oil) as an anti-fungisida Spray

Mohammad Istnaeny Hudha^{1*}, Elvianto Dwi Daryono¹, Endah Kusuma Rastini¹

¹Department of Chemical Engineering, Faculty of Industrial Technology, Institute Technology of National Malang Bendungan Sigura-gura No. 2 Malang (65145) Indonesia

Abstract: Waste cooking oil (WCO) can be used as an alternative raw material of biodiesel production with glycerol as a byproduct. Crude glycerol generated should be purified first. Glycerol purification process is done in two stages, namely saponification and acidification process. In the process of saponification strong alkali KOH is added to form the soap and then continued the acidification process with variation of pH 9.7; 9.6; 8.5; 4.7; 4.4 and the concentration of H₃PO₄ 65%, 75%, 85%. This purification process produces byproducts that K₂HPO₄ and KH₂PO₄ salt. Both the salt is being used as an anti-fungi spray (fungicide), particularly for powdery mildew on plants mango. In this study, the optimum concentration of phosphoric acid in the purification process of glycerol is 85% phosphoric acid concentration and pH optimum in the process of acidification on the purification of glycerol is pH 9.7 with K₂HPO₄ salts results and pH 4.7 with salt results KH₂PO₄. The melting point of each of the salt is 464 ° C and 252 ° C. As for the anti-fungi spray, K₂HPO₄ most effective in reducing the powdery mildew of mango plant with an efficiency of 13%.

Keywords: waste cooking oil, crude glycerol, saponification, acidification, anti-fungi spray.

Mohammad Istnaeny Hudha et al /International Journal of ChemTech Research, 2017,10(3): 55-61.
