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Abstract : The study of vibration in carbon nanotubes(CNTs) is currently a major topic of 

interest that increases understanding of their dynamic mechanical behavior. In this work 

differential transform method(DTM) is used to study the vibrational behavior of the double 

walled carbon nanotubes(DWCNT) for various boundary conditions. Elastic continuum models 

are used to study the vibrational behavior of CNTs to avoid the difficulties encountered during 

experimental characterization of nanotubes as well as the time-consuming nature of 

computational atomistic simulations. To calculate the resonant vibration of double-walled 

carbon nanotubes embedded in an elastic medium, a theoretical analysis is presented based on 

Euler-Bernoulli beam model and Winkler spring model. 
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Introduction 

Iijima’s discovery paper on multi-walled carbon nanotubes in 1991 [1] led to a major revolution in the 

area of nanoscience and nanotechnology. Carbon nanotubes (CNTs) have subjected to much attention as a result 

of their extending applications in the different emerging fields of nanotechnology. 

In aerospace industries, there is a great need for new materials which exhibit improved mechanical 

properties i.e, high strength at reduced weight. Carbon nanotubes (CNTs) are allotropes of carbon with a 

cylindrical nanostructure. Nanotubes have been constructed with length-to-diameter ratio of up to 

132,000,000:1[2], significantly larger than any other material. The structure of an SWCNT can be 

conceptualized by wrapping a one-atom-thick layer of graphite called graphene into a seamless cylinder [2], [3] 

and [6]. Single-walled nanotubes are the most likely candidate for miniaturizing electronics beyond the micro- 

electromechanical scale currently used in electronics [9]. Single-walled nanotubes are an important variety of 

carbon nanotube because they exhibit electric properties that are not shared by the multi-walled carbon nanotube 

(MWNT) variants[2].Carbon nanotubes are the strongest and stiffest materials yet discovered in terms of tensile 

strength and Elastic Modulus respectively[7]. Since carbon nanotubes have a low density for a solid of 1.3 to 1.4 

g·cm
−3

[13]. This strength results from the covalent sp
2
 bonds formed between the individual carbon atoms.  

size-dependent continuum-based methods [5–7] are becoming popular in modeling small sized structures 

as it offers much faster and accurate solutions. Sudak [8] carried out buckling analysis of multi-walled carbon 

nanotubes. Wang and Varadhan [9] analyzed the small scale effect of CNT and shell model. Yakobson et al. [10] 

introduced an atomistic model for axially compressed SWCNT and compared it to a simple continuum shell 
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model. Sears and Batra[11] proposed a comprehensive buckling analysis of single walled and multi-walled CNTs 

by molecular mechanics simulations and continuum mechanics models.  

In the present work, DTM has been used to study the vibration of CNTs embedded in an elastic medium. 

Zhou [16] proposed differential transformation method to solve both linear and non-linear initial value problems 

in electric circuit analysis. Later Chen and Ho [17] applied this method to eigen value problems. Arikoglu and 

ozkol [18] applied differential transformation method to solve the intergro – differential equation.  

Differential Transform Method:  

The Differential transform method is a semi-analytical method based on the Taylor series expansion. In 

this method, certain transformation rules are applied and the governing differential equations and the boundary 

conditions of the system are transformed into a set of algebraic equations in terms of the differential transforms of 

the original functions. The solution of these algebraic equations gives the desired solution of the problem. 

The differential transformation of the kth derivative of the function u(x) is defined as follows:                                     

0

1 ( )
( )

!

k

k

x x

d u x
U k

k dx


 
  

 
                                                                         (1) 

And the differential inverse transformation of U(k) is expressed as  
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In real application function, u(x) is expressed as finite series and equation (2) can be written as:  
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Now using certain transformation rules we can convert the governing differential equation and associated 

Boundary Conditions into some algebraic equations and after solving them we can get the desired results. We can 

use the following transformation table for this purpose.   

Table 1: Differential Transformations for Mathematical Equations 

  Original Function                   Transformed Function 
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Formulation :  

The continuum mechanics method has been successfully applied to analyze the dynamic responses of 

individual carbon nanotubes. Based on the Euler–Bernoulli beam model, the governing equation of motion of a 

beam is given by [18] 
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Where x and t are the axial coordinate and time, respectively. w(x,t) is the deflection of carbon nanotubes and p 

is the distributed transverse force acted on the nanotubes. E and I are the elastic modulus and the moment of 

inertia of a cross-section, respectively. A is the cross-sectional area and ρ is the mass density of nanotubes. 

For the DWCNTs, the interaction between inner and outer nanotubes is considered to be coupled together 

through the   Vander Waals (vdW) forces.  Equation (4) can be used to each layer of the inner and outer 

nanotubes of the DWCNTs. Assuming that the inner and outer tubes have the same thickness and effective 

material constants. Based on the Euler-Bernoulli beam model, we have:- 
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Where, the subscripts 1 and 2 denote the quantities associated with the inner and outer nanotubes respectively.  

jp (j=1,2) are the pressures exerted on inner and outer nanotubes.  

The pressure P1 acting on the inner nanotube caused by vdW interaction is given by 

 )( 121 wwcp                                                                                                                 (7) 

Where, c is the vdW interaction coefficient between inner and outer nanotubes. 

Fig.1 shows the analysis model CNTs embedded in an elastic medium. The pressure acting on the outermost layer 

due to the surrounding elastic medium can be given by 

2kwpw                                                                                                                         (8)  

Where negative sign indicates that wp is opposite to the deflection of nanotubes. k is the spring constant. 

Thus, for the embedded DWCNTs, the pressure of the outermost nanotube contacting with the elastic 

medium is given by 

)( 122 wwcpp w                                                                                                       (9) 

In the simulation vdW interaction coefficient (c) can be obtained from the interlayer energy potential, given as 

[13] 
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R1= Radius of the inner nanotube. 
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In this analysis, we consider the deflection of DWCNTs has different vibrational modes , )(xW j
, j = 1,2 

for the inner and outer nanotubes. The displacements of the vibrational solution in DWCNTs can be given by 

ti

jj exWtxw )(),(                                                                                                         (13) 

Which can be further simplified as:- 
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Boundary Conditions:  

A. Simply Supported CNT 

   For the simply supported CNT beam boundary conditions at both ends are defined mathematically as 

  0,0,0,0
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B. Clamped-Clamped CNT 

   For clamped-clamped CNT case, the boundary conditions at both ends are defined as: 
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C. Clamped-Hinged CNT 

    For clamped-hinged CNT case, the boundary conditions are defined as 

   At x=0  
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    At x=L  
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Results and Discussions : 

D.    Comparision with Analytical Solutions 

In this study, we consider double walled carbon nanotubes embedded in an elastic (Winkler) medium 

having the inner and outer diameters of 0.7nm and 1.4 nm, respectively. The effective thickness of each nanotube 
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is taken to be that of graphite sheet with 0.34 nm. The CNT has an elastic modulus of 1 TPa and the density of 

2.3
3/g cm [13,18]. 

By using the DTM as the numerical method the natural frequency for DWCNTs has been computed. 

Results are compared with Elishakoff & penataras et al [18] study in which he used Buvnov-Galerkin and 

Petrov-Galerkin methods for analyzing vibration response of DWCNTs. Also, Results are compared with Xu et 

al [26] and exact results. Very good agreement is observed with the exact solution. We have taken n= 50 so that 

the result converges up to four decimal places. Where n is the number of iterations required to converge the 

result. 

Table 2: - Simply supported (S-S) DWCNTs Fundamental frequency in THz   

L/d 10 12 14 16 18 20 

Present[DTM] 0.4683 0.3252 0.2389 0.1829 0.1446 0.1171 

Exact[18] 0.4683 0.3252 0.2389 0.1829 0.1446 0.1171 

Bubnov[18] 0.4721 0.3279 0.24093 0.1844 0.1457 0.1180 

Petrov [18] 0.4688 0.3256 0.2392 0.1831 0.1447 0.1172 

Xu et al[26] 0.46 ……. ……. …….. …….. 0.11 

            

Table 3: - Clamped-Clamped (C-C) DWCNTs Fundamental Frequency in THz 

L/d 10 12 14 16 18 20 

Present[DTM] 1.0640 0.7368 0.5425 0.4137 0.3265 0.2654 

Bubnov[18] 1.0798 0.7506 0.5517 0.4224 0.3338 0.2704 

Petrov[18] 1.0647 0.7308 0.5434 0.4113 0.3250 0.2633 

Xu et al[26] 1.0636 …… …… ……. ……. 0.2660 

 

Table 4: -Clamped-Hinged (C-H) DWCNTs Fundamental Frequency in THz 

L/d 10 12 14 16 18 20 

Present[DTM] 0.7314 0.5085 0.3728 0.2858 0.2258 0.1829 

Buvnov[18] 0.7327 0.5090 0.3740 0.2864 0.2263 0.1833 

Petrov[18] 0.7284 0.5060 0.3718 0.2847 0.2249 0.1822 

Xu et al[26] 0.728 ……. ……. ……. …….. 0.1834 
 

Clearly it is observed that fundamental frequency of DWCNTs decreasing with increasing aspect ratio 

(L/d, where d=diameter of the outer nanotube) of nanotubes. 

E. Influence of Surrounding Medium on Vibration Frequencies of DWCNTs 

Now if we change the value of Winkler Elasticity constant (k)   from 0- 300 GPa and   L=20 nm, we can 

obtain   different values of vibration frequencies which are given below. 
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Fig 1: Influence of Winkler foundation on Vibration frequencies for simply supported DWCNTs 

 

Fig 2: Influence of Winkler foundation on Vibration frequencies for Clamped-Clamped DWCNTs 

Influence of the surrounding medium on the vibration frequency is investigated based on the Winkler 

spring model. It is found that vibration frequencies of the embedded double walled carbon nanotubes are larger 

than those of the nested nanotubes. Especially, the influences of surrounding medium on the vibration frequency 

are significant for the first in-phase modes. On the other hand stiffness of surrounding medium impacts very little 

on the frequencies of the anti-phase modes. 

Conclusion:  

In this study, the vibration analysis of DWCNTs embedded in an elastic medium for various boundary 

conditions like clamped-clamped, simply supported, and clamped hinged are studied by a semi-analytical 

numerical technique called the differential transform method in a simple and accurate way. The solution of the 

present vibration analysis problem using the DTM includes transforming the governing equations of motion into 

algebraic equations and solving the transformed equations. Results indicate that phase modes have a strong 
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influence on vibration frequencies of CNTs. The stiffness of surrounding medium affects the resonant frequencies 

of DWCNTs, especially for the first in-phase modes. The investigation presented may be helpful in the 

application of CNTs such as high-frequency oscillators, dynamic mechanical analysis and mechanical sensors. 
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