



International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.2, pp 903-916, 2017

# Vibrational assignment, NBO analysis and molecular docking studies of Butyrophenone by Density functional theory

K. Rajalakshmi<sup>1</sup>\*, M.Parameswari<sup>2</sup>, Varsha Singh<sup>3</sup>

<sup>1,3</sup>Department of Physics, Sri Chandrasekharendra Saraswathi Viswa MahaVidhyalaya, Enathur, Kanchipuram, India
<sup>2</sup>Department of Chemistry, Sri Chandrasekharendra Saraswathi Viswa MahaVidhyalaya, Enathur, Kanchipuram, India

**Abstract :** The Fourier-transform infrared spectrum and Fourier-transform Raman Spectrum of Butyrophenone were recorded in the region 4000-400 cm<sup>-1</sup>and 4000-100 cm<sup>-1</sup>respectively. A complete vibrational assignment and analysis of the fundamental vibrational modes of the molecule have been compared with the harmonic vibrational frequencies computed using HF and DFT (B3LYP) method by employing 6-311 +G(d, P) basis sets. UV-Visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, The calculated HOMO and LUMO energies show that, the charge transfer occurs within the molecule Stability of the molecule arising from hyper conjugative interations, chare delocalization have been analyzed using natural bond orbital analysis (NBO). Molecular electrostatic otential studies were performed at DFT/B3LYP method using 6-311 +G (d, p) basis sets. Inclusion complex of Butyrophenone with  $\beta$ -cyclodextrin ( $\beta$ -CD) has been investigated by molecular docking method. The other molecular properties like Mulliken population analysis and themodynamic properties of the title compound have been calculated. **Keywords:** Butyrophenone, DFT; FT-IR; FT-Raman, HOMO-LUMO; NBO.

# 1. Introduction

Butyrophenoneis a chemical compound some of its derivatives (called commonly Butyrophenones). Its molecular formula is  $C_{10}H_{12}O$ . It is a colourless liquid and insoluble in water. Its molecular weight is 148.20g/mol and its melting and boiling point is  $12^{0}C$ ,  $229^{0}C$  respectively. Butyrophenone is a class of pharmaceutical drugs derived from butyrophenone. Haloperidol, melperone, domperidone, tenperone, benperidol, and droperidol are representatives of this class. These compounds have a functional ketone group and are often clinically used to treat various psychiatric disorders, including schizophrenia, organic psychosis, paranoid syndrome, acute idiopathic psychotic illnesses, and the manic phase of manic depressive illness [1-2]. Other uses include treatment of aggressive behaviour, delirium, acute anxiety, nausea, and vomiting, pain, organic brain syndrome, and Tourette's syndrome.

# 2. Experimental details

The sample was obtained from M/s. Sigma Aldrich Co., with a stated purity of 99% and was used as such without further purification. The Fourier transform infrared spectrum was recorded using Perkin Elmer spectrometer in KBr dispersion in the range of 4000–450 cm<sup>-1</sup>. The FT-Raman spectrum was recorded using the 1064 nm line of an Nd: YAG laser as excitation wavelength in the region 4000–100 cm<sup>-1</sup> on a Bruker model IFS

66 V spectrophotometer equipped with an RFS 27 FT-Raman module accessory. The UV-visible spectrum of the compound was recorded in the range of 190–900nm with Perkin Elmer-Lambda 950-UV-visible spectrometer.

#### 3. Computational details

The entire calculations were performed at Hartree Fock (HF) and Density Functional (DFT) levels on a Pentium IV personal computer using Gaussian 09W [3] program package invoking gradient geometry optimization [4]. The geometry was optimized at B3LYP/6-311++ G (d, p) level. We have used HF and DFT/B3LYP approach for the computation of molecular structure, vibrational frequencies and energies of optimized structures in the present work using GAUSSVIEW program with symmetry considerations along with available related molecules, vibrational frequency assignments were made with a high degree of accuracy. Next the spectra were analyzed in terms of the Potential Energy Distribution (PED) contributions by using the Vibrational Energy Distribution Analysis program (VEDA) written by Michal H. Jamroz[5-6]. The natural bonding orbital (NBO) calculations [7] were performed using NBO 3.1 program as implemented in the Gaussian 03W package at the above said level in order to understand various second order interaction between the filled orbital of one subsystem and vacant orbital of another subsystem, which is measure of the intermolecular and intra molecular delocalization or hyper conjugation

## 4. Result and discussion

#### 4.1 Molecular geometry

The optimized structure of Butyrophenone with atom labelled in it is shown in Fig 1. The optimized geometrical parameters (bond lengths and bond angles) were calculated by using DFT/B3LYP method with 6-311 +G (d,p) basis set and were listed in Table 1. The global minimum energy obtained for the titled compound was observed to be -463.6573 a.u. The calculated bond distance of O1-C4 is found to be 1.223Å (B3LYP/6-311+G(d,p)), 1.1911Å (HF/6-311+G(d,p)). The bond length experimentally found at 1.229Å. The difference in bond length reflects the intermolecular hydrogen bonding interactions. The calculated bond length for C2-C4 and C5-C4 at B3LYP/6-311+G(d, p) is found to be 1.5285 Å and 1.5012 Å respectively. Experimentally it is found at 1.5212 Å and 1.4927 Å for C2-C4 and C5-C4 respectively. This difference occurs as C5 is attached to ring. The bond angle O1-C4-C5 calculated to be 120.1963 Å (B3LYP/6-311+G(d,p) and experimentally found as 119.222 Å due to the influence of electronegative atom (O1).



Fig 1. Optimized structure of Butyrophenone at DFTB3LYP/6-311 +G (d,p)

| Optimized                      | Experimental  | DFT/B3LYP/   | HF/6-311+G(d,p) |
|--------------------------------|---------------|--------------|-----------------|
| parameters                     | I Contraction | 6-311+G(d.p) |                 |
| Bond length(Å)                 |               |              |                 |
| R(1.4)                         | 1.2290        | 1.223        | 1.1911          |
| R(2,3)                         | 1.5288        | 1.5189       | 1.5257          |
| R(2,4)                         | 1.5212        | 1.5285       | 1.5182          |
| R(2,12)                        | 1.0958        | 1.0971       | 1.0885          |
| R(2,13)                        | 1.0958        | 1.0971       | 1.0884          |
| R(3,6)                         | 1.5200        | 1.5314       | 1.5277          |
| R(3,14)                        | 1.0965        | 1.0941       | 1.0851          |
| R(3,15)                        | 1.0966        | 1.0941       | 1.0851          |
| R(4,5)                         | 1.4927        | 1.5012       | 1.506           |
| R(5,7)                         | 1.3759        | 1.4026       | 1.3899          |
| R(5,8)                         | 1.3759        | 1.4033       | 1.3927          |
| R(6,16)                        | 1.0947        | 1.0841       | 1.0874          |
| R(6,17)                        | 1.0945        | 1.0933       | 1.0857          |
| R(6,18)                        | 1.0946        | 1.0946       | 1.0874          |
| R(7,9)                         | 1.3949        | 1.3935       | 1.3863          |
| R(7,19)                        | 1.0837        | 1.0825       | 1.0/3/          |
| K(8,10)                        | 1.3948        | 1.39         | 1.3810          |
| K(8,20)                        | 1.08551       | 1.0829       | 1.0/32          |
| R(9,11)                        | 1.394//       | 1.3943       | 1.3837          |
| R(9,21)<br>R(10,11)            | 1.0001        | 1.0000       | 1.0/31          |
| R(10,11)<br>R(10,22)           | 1.3747        | 1.3909       | 1.3070          |
| K(10,22)                       | 1.0800        | 1.004        | 1.0752          |
| R(11,23)                       | 1.0861        | 1.084        | 1.0756          |
| Bond angle(°)                  | 112 200       | 114 5405     | 112 50 62       |
| A(3,2,4)                       | 112.200       | 114.5495     | 113.7062        |
| A(3,2,12)                      | 108.791       | 110.278      | 110.2873        |
| A(3,2,13)                      | 108.642       | 102.0062     | 102.914         |
| A(4,2,12)<br>A(4,2,13)         | 108.022       | 108.0002     | 108.100         |
| $\Delta(12, 2, 13)$            | 109.751       | 105.2751     | 106.0179        |
| A(2.3.6)                       | 111 506       | 112 2504     | 112 1128        |
| A(2,3,14)                      | 109.929       | 109.3064     | 109.2835        |
| A(2,3,15)                      | 109.982       | 109.3062     | 109.2828        |
| A(6,3,14)                      | 109.336       | 109.7824     | 109.9186        |
| A(6,3,15)                      | 109.150       | 118.6022     | 109.9182        |
| A(14,3,15)                     | 106.816       | 106.2308     | 106.1443        |
| A(1,4,2)                       | 122.077       | 121.0965     | 121.1883        |
| A(1,4,5)                       | 119.222       | 120.1963     | 120.0424        |
| A(2,4,5)                       | 118.701       | 118.7072     | 118.7693        |
| A(4,5,7)                       | 118.614       | 122.4693     | 122.8302        |
| A(4,5,8)                       | 118.607       | 118.6022     | 118.1481        |
| A(7,5,8)                       | 122.779       | 118.9285     | 119.0217        |
| A(3,0,16)                      | 110.998       | 111.319/     | 111.4043        |
| A(3,0,1/)<br>A(2,6,19)         | 110.239       | 110.9725     | 110.8381        |
| $A(3,0,1\delta)$<br>A(16.6,17) | 111.011       | 111.319      | 111.4039        |
| A(10,0,17)<br>A(16.6.18)       | 108.070       | 107.0900     | 107.0474        |
| A(17.6.18)                     | 108.073       | 107.6987     | 107.7204        |
| A(5.7.9)                       | 118.611       | 120.4152     | 120.5151        |
| A(5.7.19)                      | 123.933       | 120.5735     | 120.6882        |
| A(9,7,19)                      | 117.456       | 119.0112     | 118.7967        |
| A(5,8,10)                      | 118.616       | 120.6481     | 120.5354        |
| A(5,8,20)                      | 122.572       | 118.7658     | 118.7737        |
| A(10,8,20)                     | 118.616       | 120.5861     | 120.6909        |
| A(7,9,11)                      | 122.572       | 120.1115     | 119.9671        |
| A(7,9,21)                      | 118.811       | 119.7764     | 119.829         |
| A(11,9,21)                     | 119.996       | 120.1121     | 120.204         |
| A(8,10,11)                     | 119.993       | 119.9683     | 120.0056        |
| A(8,10,22)                     | 120.024       | 119.9674     | 119.9173        |

 Table 1. Optimized parameters (bond angle and bond length) of Butyrophenone

| A(11,10,22) | 119.983 | 120.0643 | 120.0772 |
|-------------|---------|----------|----------|
| A(9,11,10)  | 120.004 | 119.9284 | 119.9552 |
| A(9,11,23)  | 120.003 | 120.0152 | 120.0001 |
| A(10,11,23) | 119.993 | 120.0564 | 120.0448 |

The FTIR and FTRaman spectra of the title compound has been recorded experimentally and shown in Fig. 2 and Fig. 3.



Fig 2 . FT-IR spectrum of Butyrophenone Fig 3.FT-Raman spectrum of Butyrophenone

#### 4.2 Vibrational assignments

The molecule Butyrophenone has 23 atoms and it has 63 normal modes of vibration. All the 63 fundamental vibrations are IR and Raman active. The harmonic vibrational frequencies calculated for Butyrophenone and the experimental frequencies have been compared in Table 2. Vibrational assignments are based on the observations of the animated modes in Gauss View 5.1 and assignments reported in literature.

# 4.2.1 C-H Vibration

The presence of C-H stretching vibration is expected in the region 3100-3000 cm<sup>-1</sup> [8] which is the characteristic region for the ready identification of C-H stretching vibration. The observed FTIR frequencies for this vibration is found at 3062, 3028 cm<sup>-1</sup> and for FT-Raman, a band is observed at 3067cm<sup>-1</sup>. In this region the bands are not affected appreciably by the nature of the substitute [9]. The calculated frequencies for C-H vibrations is 3069 cm<sup>-1</sup> at HF 6-311 +G(d,p) method and 3062 cm<sup>-1</sup> at DFT/B3LYP/6-311 +G (d,p) levels respectively

## 4.2.2 C=O Vibration

The characteristic IR frequency of carbonyl group has been investigated earlier and the C=O stretching vibration are expected in the region 1715-1680 cm<sup>-1</sup>. The observed FTIR frequency for C=O vibrations is found at 1684 cm<sup>-1</sup> and for FT-Raman the band is observed at 1683 cm<sup>-1</sup>. The carbon oxygen band is formed by  $p\pi$ - $p\pi$ \* between carbon and oxygen and the lone pair of electron on oxygen also determine the nature of carbonyl group. The calculated frequencies for C=O vibrations is 1771 cm<sup>-1</sup> at HF 6-311 +G(d,p) method and 1633 cm<sup>-1</sup> at DFT/B3LYP/6-311 +G (d,p) levels respectively [10].

#### 4.2.3 C-C Vibration

Aromatic C-C stretching vibrations occur in the region 1625-1430 cm<sup>-1</sup>. The observed FTIR frequency for C-C vibration is found at 1597 cm<sup>-1</sup> and FTRaman band is observed at 1598 cm<sup>-1</sup>. These vibrations are in good agreement with the calculated values. The calculated values of C-C stretch is 1599 cm<sup>-1</sup> at HF/6-311+G (d,p) level and it is observed at 1543 cm<sup>-1</sup> in the DFT/B3LYP/6-311+G (d,p) level. The observed values are in good agreement with the calculated values [10].

|          | Observe             | d        | Calculate           | h    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |        |             |
|----------|---------------------|----------|---------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|--------|-------------|
|          | Observe             | u<br>1   | Calculate           | .u   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ID :   | •        | D      |             |
|          | wavenur             | nber     | wavenum             | iber |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | itensity | Raman  | activity    |
|          | (cm <sup>-1</sup> ) |          | (cm <sup>-1</sup> ) |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |        |             |
| Symm     |                     |          |                     |      | Assignments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |          |        |             |
| otry     | FTID                | FT       | HF                  | DFT  | 100191110110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HE     | DFT      | HE     | DFT         |
| etty     | FIIK                | F 1<br>5 | пг                  | DFI  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | шг     | DFI      | III    | DFI         |
| species  |                     | Raman    |                     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |        |             |
| A        | 3062                | 3067     | 3069                | 3062 | $v(C_7H_{19}) v(C_9H_{21})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.02   | 6.13     | 94.15  | 630.64      |
| Δ        |                     | _        | 3052                | 3059 | $V(C-H_{12}) V(C-H_{22})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.11  | 20.87    | 113 // | 68.00       |
| <u>л</u> | <u> </u>            | -        | 3032                | 2057 | $(C_{7}(1_{10})) (C_{8}(1_{20}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.11  | 20.07    | 112.44 | 101.51      |
| A        | -                   | 3190     | 3039                | 3050 | $V(C_9H_{21}) V(C_{11}H_{23})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.08  | 22.62    | 113.86 | 191.51      |
| A        | -                   | -        | 3028                | 3041 | $v(C_9H_{21}) v(C_{10}H_{22})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.96  | 12.08    | 97.81  | 252.33      |
| Δ        |                     |          | 3016                | 3032 | $V(C_{2}H_{24}) V(C_{42}H_{22}) V(C_{2}H_{22})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.08   | 0.14     | 48.02  | 108 18      |
|          |                     |          | 0010                | 0040 | $(C_{1121}) (C_{10122}) (C_{81123})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.10  | 6.14     | 70.02  | 202.15      |
| A        | -                   | -        | 2937                | 2949 | $V(C_6H_{17})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /8.12  | 68.99    | 7.91   | 203.15      |
| A        | -                   | -        | 2924                | 2947 | $v(C_{3}H_{14}) v(C_{3}H_{15}) v(C_{6}H_{16}) v(C_{6}H_{18})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66.06  | 115.98   | 116.16 | 14.89       |
| А        |                     |          | 2904                | 2927 | $v(C_2H_{14}) v(C_2H_{15}) v(C_2H_{16}) v(C_2H_{16})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11 40  | 0.92     | 50.65  | 122.85      |
|          |                     |          | 0906                | 2006 | $(C_{11}) (C_{11}) (C_{11}) (C_{011}) (C_{011})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.01  | 2.79     | 94.72  | 056.52      |
| A        | -                   | -        | 2890                | 2900 | $V(C_2\Pi_{12}) V(C_2\Pi_{13})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.21  | 5.78     | 04.75  | 230.35      |
| A        | -                   | -        | 2895                | 2902 | $v(C_3H_{14}) v(C_3H_{15})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.81   | 43.45    | 81.51  | 169.11      |
| А        | 3028                | -        | 2871                | 2885 | $v(C_6H_{16}) v(C_6H_{17}) v(C_6H_{18})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.65  | 35.42    | 142.82 | 613.70      |
| А        | 2963                | 2965     | 2861                | 2882 | $V(C_2H_{12}) V(C_2H_{12})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38 97  | 35 59    | 83 43  | 87 10       |
| A .      | 1601                | 1692     | 1771                | 1622 | (0, C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 066 42 | 417.00   | 27.11  | 010.02      |
| A        | 1064                | 1065     | 1//1                | 1033 | $v(O_1C_4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200.43 | 417.99   | 57.11  | 210.02      |
| A        | -                   | -        | 1622                | 1561 | $v(C_8C_{10})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.19  | 61.57    | 81.85  | 370.42      |
| А        | 1597                | 1598     | 1599                | 1543 | $v(C_{11}C_9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.20   | 29.33    | 8.03   | 38.86       |
| А        | _                   | -        | 1497                | 1452 | $\beta(H_{10}C_7C_0) \beta(H_{21}C_0C_{11}) \beta(H_{22}C_{10}C_{11})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.63   | 1.99     | 0.42   | 12.55       |
| ٨        |                     |          | 1476                | 1/3/ | $\beta(H C H) \beta(H C H)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.00   | 15.30    | 0.30   | 1 38        |
| <u>л</u> | <b></b>             | <u> </u> | 1470                | 1434 | $p(11_{15}C_{3}11_{14}) p(11_{16}C_{6}11_{18})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.90   | 15.50    | 0.30   | 1.50        |
| A        | -                   | -        | 1467                | 1424 | $\beta(H_{17}C_6H_{16})\beta(H_{18}C_6H_{17})\tau(H_{17}C_6C_3C_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.93   | 11.13    | 9.14   | 14.77       |
| A        | -                   | -        | 1460                | 1414 | $\beta(H_{15}C_3H_{14}) \beta(H_{16}C_6H_{18})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.39   | 7.35     | 12.43  | 17.39       |
| А        | -                   | -        | 1447                | 1410 | $\beta(H_{22}C_{11}C_{10})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.54  | 23.94    | 3.96   | 9.50        |
| ٨        | 1449                | 1447     | 1441                | 1291 | $\beta(\mathbf{H}, \mathbf{C}, \mathbf{H})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 86   | 00.06    | 5 47   | 17.20       |
| A        | 1440                | 1447     | 1441                | 1301 | $p(\Pi_{13} C_2 \Pi_{12})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.00   | 22.20    | 5.47   | 17.39       |
| A        | 1408                | -        | 1404                | 1344 | $\beta(H_{16}C_6H_{18})\beta(H_{17}C_6H_{16})\beta(H_{18}C_6H_{17})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31.13  | 1.16     | 1.31   | 0.68        |
| A        | 1368                | -        | 1391                | 1333 | $\beta(H_{13}C_2H_{12}) \tau(H_{15}C_3C_2C_4) \omega(C3H14H_{15})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.23  | 67.30    | 0.43   | 1.31        |
| А        | -                   | -        | 1324                | 1290 | $\beta(H_{10}C_7C_0) \beta(H_{20}C_8C_{10})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.22  | 5.87     | 2.57   | 6.27        |
| ٨        |                     |          | 1311                | 1277 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.80  | 38.06    | 2.08   | 12.44       |
| A        | -                   | -        | 1311                | 12// | $(C_5C_7) \oplus (C_3\Pi_14\Pi_{15}) \oplus (C_2\Pi_{13}\Pi_{12})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23.89  | 38.00    | 2.08   | 12.44       |
| A        | 1316                | -        | 1304                | 1266 | $\tau(H_{15}C_3C_2C_4) \ \omega(C_3H_{14}H_{15}) \ \omega(C_2H_{13}H_{12})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.28   | 35.06    | 11.96  | 8.19        |
| A        |                     |          |                     |      | $\beta(\mathrm{H}_{12}\mathrm{C}_{2}\mathrm{C}_{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |          |        |             |
|          | 1309                | -        | 1234                | 1264 | $\beta(H_{14}C_3C_6)\tau(C_3H_{14}H_{15})\tau(C_2H_{13}H_{12})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00   | 0.30     | 0.15   | 25.00       |
| Δ        | 1274                | _        | 1213                | 1197 | $\beta(H_{12}C_{2}C_{2})\tau(C_{2}H_{12}H_{12})\tau(C_{2}H_{12}H_{12})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.94  | 0.16     | 1 16   | 1.05        |
| A 1      | 1274                | 1214     | 1109                | 1167 | v(C,C) = c(C,U,U,L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11256  | 100.20   | 01.09  | 124 69      |
| A        | 1213                | 1214     | 1198                | 110/ | $V(C_4C_5)\omega(C_2H_{13}H_{12})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 113.30 | 199.20   | 21.98  | 124.08      |
| A        | 1180                | -        | 1170                | 1141 | $\beta(H_{19}C_7C_9) \beta(H_{21}C_9C_{11})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.79  | 72.12    | 2.90   | 29.60       |
| А        | 1159                | 1178     | 1103                | 1126 | $\beta(H_{22}C_{10}C_{11})\beta(H_{23}C_{11}C_{10})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.26   | 10.13    | 7.70   | 18.10       |
| Δ        | _                   | _        | 1099                | 1075 | $V(C_2C_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 17   | 1 23     | 16 19  | 41.84       |
| A .      |                     | 1107     | 1005                | 1075 | (0,0,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.12   | 0.29     | 1 25   | 0.75        |
| A        | -                   | 1107     | 1093                | 1038 | $u(n_{12}C_2C_4C_5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.15   | 0.38     | 1.55   | 2.73        |
| A        | 1104                | -        | 1064                | 1055 | $v (C_7 C_9) \beta (H_{20} C_8 C_{10})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.45   | 9.38     | 1.20   | 3.49        |
| A        | 1049                | -        | 1019                | 1002 | $v(C_6C_3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02   | 6.29     | 0.08   | 16.17       |
| А        | -                   | _        | 1017                | 999  | $V(C_{c}C_{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.37   | 1 46     | 13 25  | 40 94       |
| ٨        |                     |          | 1017                |      | $\frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) = $ | 0.07   | 11.10    | 10.20  |             |
| A        | 1007                | 1020     | 1011                | 077  | $(11_{22} C_{10} C_{11} C_{9}) ((11_{23} C_{11} C_{10} C_{8}) ((C_{8} C_{10} C_{11} C_{10} C_{11} C_{10} C_{11} C_{10} C_{11} C_{10} C_{11} C_{10} C_{11} C_{10} C_{10} C_{11} C_{10} C_{11} C_{10} C_{10} C_{10} C_{11} C_{10} C_{10} C_{11} C_{10} C_{10} C_{10} C_{11} C_{10} C_{10} C_{11} C_{10} C_{10} C_{10} C_{11} C_{10} C_{10} C_{10} C_{11} C_{10} C_{10} C_{11} C_{10} C_{10} C_{11} C_{10} C_{10} C_{10} C_{11} C_{10} C_{10} C_{10} C_{11} C_{10} C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 5 1  | 0.01     | 7 (9   | 0.10        |
|          | 1027                | 1029     | 1011                | 911  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.51   | 0.01     | /.68   | 0.12        |
| А        | -                   | -        | 1007                | 970  | $\beta(C_7C_9C_{11}) \beta(C_{10}C_{11}C_9) \beta(C_8C_{10}C_{11})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.26   | 11.58    | 0.12   | 106.36      |
| А        | -                   | -        | 986                 | 961  | $v(C_2C_4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.51  | 63.98    | 23.92  | 22.56       |
| Δ        |                     |          |                     |      | τ(HaoCoCuCu)τ(HayCoCuCuo)τ(HaoCuCu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |          |        |             |
| <u> </u> | 1002                | 1002     | 075                 | 061  | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25 31  | 0.20     | 26.28  | 0.20        |
|          | 1002                | 1002     | 515                 | 701  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.51  | 0.20     | 20.20  | 0.20        |
| A        |                     |          |                     |      | $\tau(H_{20}C_8C_{10}C_{11})\tau(H_{19}C_7C_9C_{11})\tau(H_{23}C_{11}C_{10}C_{11})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |          |        |             |
|          | 987                 | -        | 959                 | 916  | 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.37   | 2.65     | 0.12   | 0.89        |
| А        | 931                 | -        | 875                 | 863  | $v(C_3C_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.75  | 35.85    | 9.38   | 9.98        |
| А        | _                   | -        | 874                 | 849  | $\beta(H_{14}C_{2}C_{4})\tau(H_{12}C_{2}C_{2}C_{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.09   | 0.02     | 1.85   | 4.47        |
| <u>,</u> |                     |          | 574                 | 547  | -(11 C C C) -(11 C C C) - (11 C C C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07   | 0.02     | 1.05   | rr <i>1</i> |
| А        | 007                 |          | 0.6.4               | 007  | $\tau(H_{19}\cup_{7}\cup_{9}\cup_{11})\tau(H_{20}\cup_{8}\cup_{10}\cup_{11})\tau$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01   | 0.1.5    | 0.01   | 4.00        |
|          | 895                 | -        | 864                 | 825  | $(H_{21}C_9C_{11}C_{10}) \tau (H_{22}C_{10}C_{11}C_9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.21   | 0.16     | 0.91   | 4.88        |
| А        | 868                 | F        | 776                 | 763  | $\beta(C_{10}C_{11}C_9)\nu(C_2C_4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.21  | 4.78     | 7.98   | 23.57       |
| А        | 789                 | 792      | 769                 | 747  | $\tau(H_{21}C_{0}C_{11}C_{10}) \rho(C_{2}H_{12}H_{12})\rho(C_{4}H_{16}H_{16})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33.73  | 24.47    | 1.02   | 2.96        |
| Δ        | 753                 | 724      | 728                 | 700  | $\beta(H_1, C_1C_1) = 0, \beta(C_1U = 1, 0), \beta(C_1U = 1, 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37 34  | 65 40    | 0.10   | 0.00        |
| ^        | 155                 | 124      | 120                 | 109  | $p(\Pi_{14} \cup_{3} \cup_{6}) p(\bigcup_{2} \Pi_{12} \Pi_{13}) p(\bigcup_{3} \Pi_{14} \Pi_{15})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 57.34  | 05.40    | 0.10   | 0.90        |
| А        | L                   |          |                     |      | $\tau(H_{23}C_{11}C_{10}C_8)\tau(C_8C_{10}C_{11}C_9)\tau(C_5C_7C_9C_{11})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0      |          |        |             |
|          | /35                 | -        | 687                 | 670  | $(C_5C_7C_9C_{11})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33.94  | 62.16    | 0.01   | 0.36        |
| А        | 691                 | -<br>-   | 649                 | 638  | $\beta(O_1C_4C_2) \beta(C_{10}C_{11}C_9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23.11  | 23.54    | 3.07   | 5.35        |

 Table 2: Vibrational Assignments of Butyrophenone

| А | 657 | 617 | 611 | 603 | $\beta(C_7C_9C_{11})$                                                   | 0.19  | 0.20  | 6.39 | 16.17 |
|---|-----|-----|-----|-----|-------------------------------------------------------------------------|-------|-------|------|-------|
| А | 616 | -   | 575 | 554 | $\tau(C_3C_2C_4C_5)\gamma(O_1C_2C_5C_4)\rho(C_2H_{13}H_{12})$           | 10.74 | 10.61 | 0.43 | 0.69  |
| А | 569 | -   | 461 | 457 | $\beta(C_2C_4C_5)$                                                      | 3.24  | 2.42  | 1.24 | 2.74  |
| А | -   | 440 | 423 | 409 | $\tau(C_{10}C_{11}C_9C_7)\gamma(O_1C_2C_5C_4)\rho(C_2H_{13}H_{12})$     | 0.27  | 0.88  | 0.13 | 0.20  |
| А | -   | -   | 408 | 393 | $\tau(C_8C_{10}C_{11}C_9)\tau(C_{10}C_{11}C_9C_7)\tau(C_5C_7C_9C_{11})$ | 0.01  | 0.01  | 0.01 | 0.01  |
| А | -   | -   | 367 | 361 | $\beta(O_1C_4C_2)\beta(C_6C_3C_2)$                                      | 3.90  | 3.62  | 0.96 | 1.63  |
| А | -   | 302 | 287 | 285 | $v(C_4C_5)$                                                             | 1.09  | 1.45  | 5.62 | 6.81  |
| А | -   | -   | 249 | 243 | $\beta(C_4C_5C_8) \beta(C_3C_2C_4)$                                     | 8.56  | 12.37 | 0.15 | 0.51  |
| А | -   | -   | 239 | 238 | $\tau(H_{16}C_6C_3C_2)\tau(H_{17}C_6C_3C_2)\tau(H_{18}C_6C_3C_2)$       | 0.04  | 0.16  | 0.03 | 0.09  |
| А | -   | -   | 161 | 154 | $\gamma(C_4C_7C_8C_5)$                                                  | 0.07  | 0.07  | 2.63 | 6.00  |
| А | -   | -   | 108 | 106 | $\beta(C_4C_5C_8) \beta(C_2C_4C_5) \beta(C_3C_2C_4)$                    | 0.54  | 0.98  | 0.22 | 0.58  |
| А | -   | -   | 97  | 88  | $\tau(C_2C_4C_5C_7)\tau(C_6C_3C_2C_4)$                                  | 2.66  | 4.76  | 0.15 | 0.52  |
| A | -   | 70  | 71  | 58  | $\tau(C_3C_2C_4C_5)\tau(C_6C_3C_2C_4)$                                  | 0.04  | 0.16  | 0.13 | 0.38  |
| А | -   | -   | 28  | 27  | $\tau(C_2C_4C_5C_7)$                                                    | 1.29  | 1.44  | 1.92 | 5.82  |

Abbreviation : v=stretching,  $\beta$ =bending,  $\tau$ =torsion/twisting,  $\gamma$ =out of plane bending,  $\rho$ =rocking,  $\omega$ =wagging

## 4.3 UV-Vis Spectral Studies:

On fully optimized structure of molecule, TDDFT/B3LYP/ 6-311 +G (d, p) level has been employed to determine excited states of Butyrophenone. Fig 4 shows the recorded spectrum of Butyrophenone. The calculated results involving vertical excitation energies, oscillator strength (f) and wavelength are tabulated in Table 3. The calculated excitation energies of  $p-p^*$  transition with experimental values are compared and results are in good agreement with calculated values. The calculations of molecular orbital geometry show that visible absorption maxima of molecule correspond to electron transition between frontier orbitals such as transition from HOMO to LUMO. As can be seen from UV–vis spectrum, maxima absorption values have been found to be 315.56, 275.18 and 236.69 nm [10]. The  $\lambda$ max is a function of substitution, stronger the donor character of substitution, more the electrons are pushed into molecule, and the larger is  $\lambda$ max.

| Evoited | Cl                       | Wavenumber(λnm) |            | Occillator   | Enongy |  |
|---------|--------------------------|-----------------|------------|--------------|--------|--|
| state   | expansion<br>coefficient | Experimental    | Calculated | strength (f) | (eV)   |  |
| Excited |                          |                 |            |              |        |  |
| state→1 |                          |                 |            |              |        |  |
| 40→41   | 0.69544                  | 215 56          | 222.54     | 0            | 2 8440 |  |
| 40→45   | -0.11718                 | 515.50          | 522.54     | 0            | 5.6440 |  |
| Excited |                          |                 |            |              |        |  |
| state→2 |                          |                 |            |              |        |  |
| 38→41   | -0.39980                 |                 |            |              |        |  |
| 38→42   | -0.18205                 | 275 19          | 266 70     | 0.0291       | 1 6170 |  |
| 39→41   | 0.53198                  | 273.18          | 200.79     | 0.0281       | 4.0472 |  |
| 39→42   | -0.15270                 |                 |            |              |        |  |
| Excited |                          |                 |            |              |        |  |
| state→3 |                          |                 |            |              |        |  |
| 38→41   | 0.54221                  |                 |            |              |        |  |
| 39→41   | 0.42278                  | 236.69          | 247.40     | 0.3331       | 5.0115 |  |
| 39→42   | 0.12204                  |                 |            |              |        |  |

Table 3. Calculated parameter of Butyrophenone using TDDFT/B3LYP6-311+G(d,p) level



Fig 4. UV-Vis spectrum of Butyrophenone

# 4.4 Frontier molecular orbitals

Highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are very important parameters for quantum chemistry. The HOMO is the orbital that acts as an electron donor and LUMO is the orbital that largely act as electron acceptor. The energy of HOMO, LUMO, LUMO+1 and HOMO-1 and their orbital energy gaps of Butyrophenone are calculated using B3LYP/6-311+G (d,p) method and their positive, negative region are shown in Fig 5. The Frontier orbital energy gap ( $E_L-E_H$ ) for Butyrophenone is found to be 5.3013eV.Based on density functional descriptors, global chemical reactivity descriptors of compounds such as hardness ( $\eta$ ), softness ( $\zeta$ ), chemical potential ( $\mu$ ), and electrophilicity index ( $\omega$ ). Using Koopman's theorem for closed-shell compounds, symbols can be defined as:  $\eta = (I-A)/2$ ,  $\mu = -(I+A)/2$ ,  $\zeta = 1/\eta$ ,  $I = -E_H$ ,  $A = -E_L$ where, I and A are the ionization potential and electron affinity of the compound that measures the extent of chemical reactivity [11]. It is the reciprocal of hardness. The global electrophilic index of the compound is defined as follows:  $\omega = \mu^2/2\eta$ . and shown in Table 4.

| <b>Molecular</b> properties | B3LYP/6-311+G(d,p) |
|-----------------------------|--------------------|
| Energies (a.u)              | -463.6573          |
| E <sub>komo</sub> (eV)      | -7.2914            |
| E <sub>lamo</sub> (eV)      | -1.9901            |
| Energy gap (eV)             | 5.3013             |
| Ionization potential        | 7.2914             |
| (1)                         |                    |
| Electron affinity (A)       | 1.9901             |
| Global hardness (η)         | 2.6506             |
| Chemical potential (µ)      | -4.6407            |
| Electrophilicity (@)        | 4.0624             |
| Softness (ζ)                | 0.3772             |

 Table 4. Comparison of HOMO-LUMO energy gaps and related molecular properties of the title compound



Fig 5. Frontier molecular orbital of Butyrophenone

# 4.5 Natural Bonding Orbital

Natural Bond Orbital (NBO) analysis is an effective tool for determining the above mentioned factors. For the titled compound Butyrophenone, in order to investigate the inter and intra molecular charge transfer takes place within the molecule. NBO analysis has been performed using NBO 4.1 program as implemented in the Gaussian 09 package at the DFT-B3LYP/6-311+G (d,p) level. For the titled compound, the donor-acceptor interactions in the NBO analysis were calculated by second order perturbation theory analysis. In the antibonding orbitals ( $\sigma^*$ ,  $\pi^*$ ), the electron density(ED) changes and their energies E(2) has been calculated by NBO analysis at DFT-B3LYP/6-311+G (d,p) level in order to create a clean evidence for stabilization of energy emerging from molecular interactions.

The interactions between electron donors and electron acceptors will be more intensive when the E(2) value is larger. The strength of the delocalization interaction can be estimated by the second-order energy lowering E(2);

 $E(2) = \Delta E_{ij} = qiF(i,j)^2/E_j - E_i$ 

Where, E (2) is the stabilization energy, qi is the donor orbital occupancy, Ei and Ej are the diagonal elements and F (i, j) is the off diagonal NBO Fock matrix element reported or Kohn–Sham Matrix element.

Table 5 shows the possible interactions with donors, acceptors and their electron densities. A strong interaction between bonding and anti-bonding ( $\pi \rightarrow \pi^*$ ) electron with greater energy contribution are :  $\pi$ (C9-C11) $\rightarrow \pi^*$ (C5-C7)having energy (22.50Kcal/mol),  $\pi$ (C8-C10) $\rightarrow \pi^*$ (C9-C11) having energy (21.38 Kcal/mol),  $\pi$ (C5-C7) $\rightarrow \pi^*$ (C8-C10) having energy (20.08 Kcal/mol),  $\pi$ (C5-C7) $\rightarrow \pi^*$ (O1-C4) having energy (19.35 Kcal/mol). The stabilization energy is higher for the interaction between  $\pi^*$ (O1-C4)  $\rightarrow \pi^*$ (C5-C7) which is found to be 144.24 Kcal/mol [11].

The lone pair interactions were prominent in the titled compound as expected due to the charge transfer that taking place from lone pair atoms into the ring. The lone pair interaction with the following  $E^{(2)}$  value :  $Lp(O1) \rightarrow \sigma^*(C2-C4)$  (18.84 Kcal/mol),  $Lp(O1) \rightarrow \sigma^*(C4-C5)$  (18.36 Kcal/mol).

| Donor (i)                                   | Acceptor (j)                                             | E <sup>(2)</sup> | E <sub>@</sub> -E <sub>@</sub> | F(i,j) |
|---------------------------------------------|----------------------------------------------------------|------------------|--------------------------------|--------|
|                                             |                                                          | k cal/mol        | <b>a.</b> u                    | a.u    |
| π(O <sub>1</sub> -C <sub>4</sub> )          | <b>π</b> *(C <sub>5</sub> -C <sub>7</sub> )              | 144.24           | 0.01                           | 0.071  |
| π(C <sub>9</sub> -C <sub>11</sub> )         | <b>π*(C</b> 5-C7)                                        | 22.50            | 0.28                           | 0.071  |
| <b>π(C<sub>8</sub>-C<sub>10</sub>)</b>      | <b>π*(C</b> 9-C <sub>11</sub> )                          | 21.38            | 0.28                           | 0.070  |
| π(C <sub>5</sub> -C <sub>7</sub> )          | <b>π</b> <sup>±</sup> (C <sub>5</sub> -C <sub>10</sub> ) | 20.08            | 0.29                           | 0.069  |
| π(C <sub>5</sub> -C <sub>7</sub> )          | <b>π</b> *(O <sub>1</sub> -C <sub>4</sub> )              | 19.35            | 0.27                           | 0.068  |
| <b>π(C<sub>8</sub>-C<sub>10</sub>)</b>      | <b>π</b> <sup>±</sup> (C <sub>5</sub> -C <sub>7</sub> )  | 19.02            | 0.28                           | 0.066  |
| Lp(O <sub>1</sub> )                         | σ⁺(C <sub>2</sub> -C <sub>4</sub> )                      | 18.84            | 0.67                           | 0.102  |
| Lp(O <sub>1</sub> )                         | σ⁺(C₄−C₅)                                                | 18.36            | 0.70                           | 0.102  |
| π(C <sub>5</sub> -C <sub>7</sub> )          | π*(C <sub>9</sub> -C <sub>11</sub> )                     | 18.28            | 0.28                           | 0.065  |
| π(C <sub>9</sub> -C <sub>11</sub> )         | <b>π</b> <sup>±</sup> (C <sub>5</sub> -C <sub>10</sub> ) | 17.99            | 0.28                           | 0.065  |
| <b>σ(</b> С <sub>2</sub> -Н <sub>13</sub> ) | σ*(O₁−C₄)                                                | 5.32             | 0.51                           | 0.048  |
| <b>σ(C₂−H</b> 12)                           | σ⁺(O <sub>1</sub> -C₄)                                   | 5.33             | 0.51                           | 0.048  |
| <b>σ(C<sub>8</sub>−H<sub>20</sub>)</b>      | <b>π</b> *(C <sub>5</sub> -C <sub>7</sub> )              | 4.49             | 1.08                           | 0.062  |
| π(O <sub>1</sub> -C <sub>4</sub> )          | <b>π</b> <sup>±</sup> (C <sub>5</sub> -C <sub>7</sub> )  | 4.45             | 0.41                           | 0.042  |
| <b>σ(C</b> 7−H <sub>19</sub> )              | π*(C <sub>5</sub> -C <sub>8</sub> )                      | 4.29             | 1.08                           | 0.061  |

Table 5. Natural bonding orbital of Butyrophenone

# 4.6 Mulliken charges

In order to investigate charges on atoms and their changes the Mulliken population analysis of the Butyrophenone has been carried out by B3LYP/6-311+G (d,p) level and values are shown in Table 6. The graphical representation of the atomic charges is shown in Fig. 6.



Fig 6..Mulliken atomic charge plots of Butyrophenone

| A 40 mmg        | Charges                              | Charges           |
|-----------------|--------------------------------------|-------------------|
| Atoms           | $DFT/B3LYP/\overline{6-31} + G(d,p)$ | HF/6-311 + G(d,p) |
| O <sub>1</sub>  | -0.31279                             | -0.31193          |
| C <sub>2</sub>  | -0.4991                              | -0.37307          |
| C <sub>3</sub>  | -0.23503                             | -0.22481          |
| $C_4$           | -0.3635                              | 48832             |
| C <sub>5</sub>  | 1.783736                             | 2.041258          |
| C <sub>6</sub>  | -0.61358                             | -0.56896          |
| C <sub>7</sub>  | -0.81165                             | -0.99996          |
| C <sub>8</sub>  | 0.429111                             | 0.534896          |
| C <sub>9</sub>  | -0.73804                             | -0.8223           |
| C <sub>10</sub> | -0.36352                             | -0.34142          |
| C <sub>11</sub> | -0.15991                             | -0.151            |
| H <sub>12</sub> | 0.193325                             | 0.167838          |
| H <sub>13</sub> | 0.19331                              | 0.167899          |
| H <sub>14</sub> | 0.14988                              | 0.142657          |
| H <sub>15</sub> | 0.149876                             | 0.142685          |
| H <sub>16</sub> | 0.137568                             | 0.116041          |
| H <sub>17</sub> | 0.144307                             | 0.131266          |
| H <sub>18</sub> | 0.137568                             | 0.116021          |
| H <sub>19</sub> | 0.165907                             | 0.147344          |
| H <sub>20</sub> | 0.151762                             | 0.162389          |
| H <sub>21</sub> | 0.153426                             | 0.136156          |
| H <sub>22</sub> | 0.152511                             | 0.13796           |
| H <sub>23</sub> | 0.15484                              | 0.137358          |

Table 6. Mulliken charges of Butyrophenone

## 4.7 Electrostatic potential and molecular electrostatic potential:

In the present study, the electrostatic potential (ESP), and the molecular electrostatic potential (MEP) map figures for Butyrophenone calculated at DFT/B3LYP/ 6-311 + G(d,p) level are shown in Fig. 7(a) and 7(b) respectively. It can be seen from the ESP figures, that while the negative ESP is localized more over the oxygen atoms and is reflected as a yellowish blob, the positive ESP is localized on the rest of the molecules. Molecular electrostatic potential (MEP) is related to the electronic density and is very useful descriptor in understanding sites for electrophilic attack and nucleophilic reactions as well as hydrogen bonding interactions where the negative region is mainly localized on oxygen atoms [12].



Fig. 7(a)Electrostatic Potential map (b) Molecular Electrostatic Potential map of Butyrophenone at B3LYP/6-311+G(d,p) level

## 4.8 Molecular docking studies

Molecular docking studies are used to determine the interaction of two molecules and to find the best orientation of the ligand which would form a complex with overall minimum energy. The small molecule, known as ligand usually fits within proteins cavity which is predicted by the search algorithm.

Molecular docking study of inclusion process The Patch Dock server program gave several possible docked models for the probable structure based on the energetic parameters; geometric shape complementarily scoreapproximate interface area size and atomic contact energy [13] of the Butyrophenone-CD inclusion complex. The docked Butyrophenone:  $\beta$ -CD model is shown in Fig 8.with the highest geometric shape complementarily score 2616, approximate interface area size of the complex 279.30 Å<sup>2</sup> and atomic contact energy –183.66 kcal mol<sup>-1</sup> was the highly probable and energetically favourable model.



Fig 8. Docked β CD: Butyrophenone

#### 4.9 Thermodynamic Parameters

The thermodynamic parameters namely heat capacity, entropy, rotational constants, dipole moments. Vibrational and vibrational zero point energies of the compound have also been computed at DFT-B3LYP level using 6-311 + G(d,p) basis set and are presented in Table 7.The Thermodynamic data provides useful information for further study on the title compound, when this may be used as a reactant to take part in a new reaction. The dipole moment and its principal inertial axes are strongly depending upon the conformation of the molecule.

The temperature dependence of the thermodynamic properties heat capacity at constant pressure(Cp), entropy(S) and enthalpy change ( $\Delta H_{0->T}$ ) for Butyrophenone were also determined by B3LYP/6-311+G(d,p) method and listed in Table 8 and are shown in Fig.9. It is seen that the heat capacities, entropy, enthalpy changes are increasing with temperature ranging from 100 to 1000 K due to the fact that the molecular vibrational intensities increase with temperature. These observed relations of the thermodynamic functions vs. temperatures were fitted by quadratic formulas:

$$\begin{split} S &= 217.0465 + 0.5 \ T - 1.3609 \ x \ 10^{-4} \ T^2 \\ Cp &= 21.6815 + 0.3858 \ T - 1.5329 \ x \ 10^{-4} \ T^2 \\ \Delta H &= -4.1855 + 0.0587 \ T + 1.1077 \ x \ 10^{-4} \ T^2 \end{split}$$

| Thermodynamical                      | DFT/B3LYP/     | HF/6-311 +G (d,p) |
|--------------------------------------|----------------|-------------------|
| parameters                           | 6-311 +G (d,p) |                   |
| SCF (a.u)                            | -463.6573      | -460.6561         |
| Rotational constant (GHz)            |                |                   |
| Α                                    | 2.8631         | 2.93917           |
| В                                    | 0.54431        | 0.54639           |
| С                                    | 0.4612         | 0.46463           |
| Dipole moment (Debye)                |                |                   |
| Ц                                    | 1.5336         | 1.0161            |
| μ <sub>v</sub>                       | -3.9639        | -2.8501           |
| μ                                    | 0.0003         | 0018              |
|                                      | 4.2502         | 3.0258            |
| Zero-point vibrational               | 121.56419      | 129.82161         |
| energy (k cal/mol)                   |                |                   |
| Vibrational energy, E <sub>vib</sub> | 126.453        | 134.318           |
| (k cal/mol)                          |                |                   |
| Total energy (thermal),              | 128.231        | 136.096           |
| E <sub>nta</sub> (k cal/mol)         |                |                   |
| Heat capacity at constant            | 39.498         | 36.693            |
| volume(Cv)(cal/mol-K)                |                |                   |
| Entropy(S)(Cal/mol-K)                | 103.470        | 100.472           |

# Table 7 .Thermodynamic parameter of Butyrophenone

# Table 8. Temperature dependence of thermodynamic properties

| Temperature<br>(K) | Cp (J/mol K) | S (J/ mol K) | ΔH <sub>0→T</sub> (KJ/mol) |
|--------------------|--------------|--------------|----------------------------|
| 100.00             | 130.40       | 353.51       | 8_32                       |
| 200.00             | 220.36       | 470.68       | 25.74                      |
| 298.15             | 326.02       | 577.93       | 52.45                      |
| 300.00             | 328.09       | 579.96       | 53.05                      |
| 400.00             | 436.73       | 689.45       | 91.37                      |
| 500.00             | 530.77       | 797_33       | 139.89                     |
| 600.00             | 607.98       | 901.17       | 196.96                     |
| 700.00             | 671.22       | 999.79       | 261.03                     |
| 800.00             | 723.64       | 1092.95      | 330.85                     |
| 900.00             | 767.62       | 1180.79      | 405.47                     |
| 1000.00            | 804.83       | 1263.65      | 484.15                     |



Fig 9. Effect of temperature on heat capacity, entropy and enthalpy

# 5 Conclusion

The geometry of Butyrophenone was optimized with HF and DFT-B3LYP methods using 6-311 +G(d,p). The complete molecular structural parameters of the compound have been obtained from ab initio and DFT calculations. The bond order and atomic charges of the title molecule have been studied by both HF and DFT methods. The vibrational frequencies of the compound have been precisely assigned and analyzed and the theoretical results were compared with the experimental vibrations. The present investigation provides the complete vibrational assignments, structural information and electronic properties of the compound which may be useful to upgrade the knowledge on Butyrophenone. The energies of MO's, absorption wavelength ( $\lambda$ max), oscillator strength and excitation energies of the compound were also determined from TD-DFT method and compared with the experimental values. The NBO analysis reflects the charge transfer mainly due to C-C group of the molecule. The calculated electronic properties are compared with experimental electronic spectrum. The calculated HOMO and LUMO energies show that, the charge transfer occurs within the molecule and helped in analyzing the chemical reactivity of the molecule. The molecular electrostatic potential analysis have also been studied to explain the activity of the molecule. The inclusion complex formation which was also confirmed by molecular docking studies. The molecular docking study confirms the formation of inclusion complex of Butyrophenone with  $\beta$ -CD where the enhanced absorption confirm the entrapment of benzene ring of Butyrophenone into the  $\beta$ -CD nano cavity and –OH group containing benzene ring in the upper part of  $\beta$ -CD cavity. Several thermodynamical parameters were obtained and analyzed with HF and DFT methods using the same basis set. The atomic charges of the molecule were studied by both the HF and DFT methods. On comparing the experimental results with the theoretically predicted values, it was found that the B3LYP method was more accurate, proving that DFT is a reliable method for molecular vibrational analysis.

## References

- 1. Keith Parker; Laurence Brunton Goodman; Louis Sanford; Lazo, John S.; Gilman, Alfred (2006). Goodman & Gilman's The Pharmacological Basis of Therapeutics (11th ed.). New York: McGraw-Hill. ISBN 0071422803.
- Grogan, Charles H.; Rice, Leonard M. (1967). "Ω-Azabicyclic Butyrophenones". Journal of Medicinal Chemistry. 10 (4): 621.doi: 10.1021/jm00316a022. PMID 6037051.\
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N.Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rga, G.A.Peterson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O.Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.Morokuma,

G.A. Voth, P.Salvador, J.J. Dannenberg, V.G. Zakrzski, B.B.Stefanov, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.Cioslowski, B.B. Stefanov, G. Liu, A.P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al- Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W.Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian Inc, Wallingford, CT, 2004.

- 4. H.B. Schlegel, Optimization of Equilibrium Geometries and Transition Structures J. Comput.Chem. 3 (1982) 214 -218.
- 5. A. Frisch, A.B. Neilson, A.J. Holder, GAUSSVIEW User manual, Gaussian Inc., Pittsburgh, PA, 2000.
- 6. H.Jamróz, Michał, VEDA, Spectrochim. Acta A 114 (2013) 220-230.
- 7. E.D. Glendenning, A.E. Reed, J.E. Carpenter, We in Hold, NBO Version 3.1, TCI, University of Wisconsin, Madison, 1998.
- 8. M. Silverstein, G.C. Basseler, C. Morill, "Spectrometric Identification of Organic Compunds", Wiley, New York, 1981
- 9. KalaimagalK., GunasekaranS., FTIR, FT-Raman and Density functional theory studies on Ofloxacin, Int.J. ChemTech Res. 2015;8(3);1403-1416.
- 10. Sherin Percy Prema Leela J. Hemamalini R, Muthu S, The spectroscopic (FTIR, FT-Raman and UV), first-order hyperpolarizability and HOMO–LUMO analysis of an Antibiotic drug. Int.J. ChemTech Res. 2015;8(6); 203-215.
- 11. Gopika V.P., Havisha G , Muthu S, Raja M,Raj Muhamed R Molecular structure, NBO, first order hyperpolarizability and HOMO-LUMO analysis of 7-Azathieno[2,3-c]cinnoline Int.J. ChemTech Res. 2015;8(12); 721-733.
- 12. SakthivelS, AlagesanT, MuthuS, SwaminathanT., SaaiAnugraha T.S., Quantum Mechanical Study of the Structure and Spectroscopic (FT-IRand FT-Raman), Fukui Function Analysis and First-Order Hyperpolarizability of 2-Amino-1H-Purine- 6(7H)-Thione by Density Functional methodInt.J. ChemTech Res. 2015;8(10); 276-293.
- 13. Ranjeth B, Anusuya T, Simulation and Modeling of Micelle as Nano-Drug Carrier for Targeting of Anticancer Drugs, Int.J. ChemTech Res. 2014-2015; 7(2); 700-705.

\*\*\*\*