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Abstract : This paper presents a variable speed control of the squirrel induction machine fed 

by a three-phase matrix converter. Principle of vector control for induction motor and vector 
control strategy in synchronous reference frame are described. The use of matrix converter 

allows the availability of better switching devices, bi-directional power flow and sinusoidal 

input and output waveform. Also, the advantages of matrix converter are combined with the 
advantages of the field oriented control technique where Venturini algorithm is applied. We 

study the operation of the motor in the four regions of speed-torque plane. At this effect, the 

simulation results of the whole system are carried out with four quadrants of motor operations 

and the performance results obtained are presented and analyzed. A good performance of 
induction motor fed by a matrix converter is proved. 
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1. Introduction 

In the recent decades, an increasing attention has been drawn to the AC/AC matrix converters due to its 
advantages as: higher power density, smaller size converter and easier maintenance compared to AC/DC/AC 

converter, it provides bidirectional power flow, sinusoidal input/output currents without harmonics compared to 

commercial inverters and adjustable input power factor [1, 2]. In addition, it allows to control: the rotor currents 

magnitude, frequency and input power factor[3-5]. Thus, matrix converter (MC) allows a compact design due to 
the lack of dc-link capacitors for energy storage [2]. However, most existing models generally used a 

conventional vector control [6, 7]. The conventional proportional integral controller (PI) is widely used in the 

control of d-q rotor currents because of its simple structures and good performances. The use of matrix 
converter presents also a several disadvantages such as: limited availability of the bidirectional power electronic 

devices working at high frequencies, complex control. The maximum ratio between output and the input voltage 

is 86,6% and a high cost of the systems protection for the bidirectional switches [4, 8, 9].Despite all these 
disadvantages, matrix converters have been used in several areas [10-15].The simulation of a voltage control for 

a three-phase to three-phases matrix converter working in different regions of operations have been studied in 

[9].The present work is articulates on the modeling, control, simulation and analysis of squirrel induction motor 

(IM) fed by matrix converter. 

This paper is structured as follow: the second section describe the vector model of squirrel induction 

motor. The modeling and Venturini algorithm control of the induction motor are described in the third section. 
After, the chain composed of matrix converter, induction motor and the Venturini algorithm are programmed 

under Matlab/Simulink environment and the analysis of the performances in different regions of operations are 

given in the fourth section. Finally, a conclusion on the realized parts is presented.  
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2. Modelling of Matrix Converter   

As shown in Fig. 1, the matrix converter is constituted of nine bi-directional switches, arranged as three 
sets of three where the input phases are connected to the three output lines. The switches are controlled in such a 

way that the average output voltages and currents are sinusoids of the required frequency and magnitude [16, 

17]. 

 

 

 

 

 

 

 

 

 

  

 

Figure1.Schematic block diagram of matrix converter induction motor drive 

A single stage matrix converter is used to convert nine AC phase input voltage into three AC phase 

output, with a control of magnitude and frequency current output. So, matrix converter can generate unlimited 
output frequency compared to those of input. The switching functions are defined as follows [18]: 

 (1) 

With,   j and . 

The three phase output voltagesVa, Vb, Vc can be synthesized in terms of input voltages VA, VB, VC  and 
switching functions Sjk by the following equation [19, 20]:  

 (2) 

The input currentsiA, iB, iC can be also calculated in terms of output currents ia, ib, ic as: 

 (3) 

Consequently, from the equations (2) and (3), the output line currents and input line voltages are presented by 

equations (4) and (5) as follow:  
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(4) 

 (5) 

Where, the modulations functions for output line are given as:  

 
   

 
   

 
   

3. Venturini Matrix Converter Algorithm 

Generally, two (2) constraints on the matrix converter control are considered: in the aim to prevent 

short-circuit between input terminals, any two input terminals should never be connected to the same output line 

and eliminate open circuit to the output terminals. The switching constraint is defined as follow: 

   (6) 

Venturini algorithm or the direct transfer function approach is usedto control only 27 switching among 
512 possible combinations[21]. Furthermore, it allows generating variable-frequency and variable amplitude 

sinusoidal output voltages. The calculation time of each output phase voltage  is a fraction of the switching 

frequency periodTs  

(7) 

With: 

 (8) 

The maximum ratio between output and the input voltage is denoted by  which represent the maximum 
ration, equal to 86, 6% [4]. 

The three-phase sinusoidal input voltages can be calculated by the following equation: 

(9) 

Furthermore,Vis and ϴi is given in function of the measured VBC and VAB in the following form [22]: 

(10) 
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(11) 

So, we can write Vos and ϴo as : 

(12) 

(13) 

The voltage gainis calculated as: 

(14) 

The matrix transfer for output phases can be calculated according to the following equations: 

(15) 

So, , , . 

The structure of the simulation block diagram that we have developed for the simulation of the control 
of the matrix converter is represented by Figure 2: 

 

Figure2.Subsystem control of MC 

4. Modeling of the Induction Motor 

The induction motor (IM) model is presented and controlled in synchronous d-q reference frame where 
the d-axis is aligned with the stator flux linkage vector. It is controlled by acting on the direct and quadrature 



Khouloud Bedoud et al /International Journal of ChemTech Research, 2017,10(2): 881-890. 885 

 

 
components of the rotor voltage. In effect, it enables the decoupled control between the electrical torque and the 

rotor excitation current is obtained.. Furthermore, the electromagnetic torque and the stator reactive power can 

be controlled by means of the rotor currents irq and ird, respectively. 

The mathematical model of the induction motor expressed in a d-q synchronously rotating reference 

frame, are presented as follow [23]: 

(16) 

Where, the state vectors X, Y and U are respectively: 

and .  

(17) 

(18) 

 (19) 

With: ; ; ; ; ; ; 

; ; ; ; ; 

The stator and rotor flux as a function of currents are given as: 

  (20) 

With,   and . 

Moreover, Rs and Rr denote the stator and rotor resistance, respectively. Ls is the stator and Lr the rotor 

self-inductances, where the quantities Lls and Llr  are the stator and rotor leakage inductances, respectively, and 
Lo denote the magnetizing inductance.  

The mechanical equations of the system can be characterized by [24]: 

(21)                         
Where, the electromagnetic torque is give as follows: 

(22) 
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With, p: number of poles pairs; M: mutual inductance; J: moment of inertia; Tem : electromagnetic torque; 

Tl: load torque. 

5. Vector Control 

In order to realize the control low, the induction machine model is presented in synchronous d-q 

reference frame where the d-axis is aligned with the rotor flux linkage vector. 

 

 

 

 

 

 

 

Figure 3. Orientation of the d-q frame 

We obtain: 

 (23) 

So, we deduce: 

   (24) 

However, one can establish the relationship between  and irq as well as between Tem and irq .These 
relations are given by the expressions (25) and (26), respectively: 

  (25) 

 (26) 

Simulation Results and Interpretations 

In order to analyze the functioning of the conversion structure considered in the four quadrant of speed-
torque plane as shown in Table 1. 

Table 1. Four-region operation of the drive system 

Speed Torque quadrant Operating regime 

> 0 > 0 I Motor 

> 0 < 0 II Generator 

< 0 < 0 III Motor 

< 0 > 0 IV Generator 
 

Figure 4 display the electromagnetic torque and the rotor speed variations of the process, for a reference 

speed ensuring a starting and an inversion of rotation, simultaneously. As can be seen from this figure, the 
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possible operation regions delimiting the four quadrants are indicated. The motor parameters are given in Table 

2. 

Table 2. Simulation parameters of IM 

Symbol Designation values 

Rs Stator resistance 4.85 Ω 

Rr Rotor resistance 3.805 Ω 

Ls Stator inductance 0.274H 

Lr Rotor inductance 0.274H 

Lm Mutual inductance 0.258H 

p Pole pairs 2 

J Moment of inertia 0.0031 Kg/m
2
 

f Friction coefficient 0.001136N.m.s/rad 

Vs Stator voltage 600v 

 

Note that for the first time interval after a start at zero time, the speed increases and stabilizes at the 

reference speed 80rd/s after a duration of 0.5s and after the inversion of 80rd/s to -80rd/s at the instant 1 second, 

the inversion time lasts0.5s. Thereafter, at the instant t= 2 seconds, we took new set points for lower speeds 
(50rd / s) and (-50rd / s). We remark that the two (2) sizes (speed and torque) follow their references correctly. 
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Figure 4. Speed and Electromagnetic torque 

Figure 5 and 6, show the output and input voltages of the matrix converter, respectively. We particularly 
notice that the simulation waveforms of the output voltages approximate sinusoidal forms. 
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Figure 5. Matrix output voltages  
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Figure 6. Matrix converter input voltages  

Otherwise, the Figure 7 illustrates the superimposition of the three quantities, in particular, t output 
voltage of the matrix converter, its input voltage and the phase current “a” of the induction motor (With a scale 

of 10 times). 

Finally, through the figure 8, we have shown the evolution of the motor speed as a function of the 

electric torque in the four possible operation quadrants of the drive system.  This corresponds to the two 

imposed references speeds. 
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Figure 7.Waveforms for input voltage, output current and motor current for 80rd/s 
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Figure 8.Different operating modes 
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6. Conclusion 

In this paper, a detailed modeling of matrix converter, induction motor and a field oriented controller 
taking into account the four quadrants operation is proposed. The developed models are validated by numerical 

simulation under Matlab/Simulink software to investigate the validity of the study. It has been clearly shown 

that this system can operated in the four quadrants of motor operations. Hence, this structure is highly 
recommended for industrial installations require variable speed operation. 
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