

International Journal of ChemTech Research

CODEN(USA): IJCRGG, ISSN: 0974-4290,

ISSN(Online):2455-9555 Vol.10 No.14, pp 88-92,2017

ChemTech

Effect of mg₂si along with bismuth on the microstructure andmechanical properties of mg-al/ mg₂si composite

G. Manjunath¹*, D. Shivalingappa¹, R. Kishore Kumar¹, D. E. Umesha²

Department of Mechanical Engineering,

¹Adhiyamaan College of Engineering, (Autonomous) Hosur, Tamil Nadu, India ²Bapuji Institute of Engineering and Technology, Davangere, Karnataka, India

Abstract:Recent studies show that magnesium based composites can be considered as a viable option for weight reduction in automobiles. The influence of Mg₂Si formed by the addition of silicon on the microstructure and mechanical properties of Mg-Al/Mg₂Si composite has been investigated in the present work.Convectionalcomposite processing techniques produce large sized Mg₂Si particles, whichare highly brittlein nature and eventually will deteriorate the mechanical properties. Hence, formation of large sized Mg₂Si particles is eliminated by adopting in-situ casting technique and as well as adding modifier, Bismuth for refining Mg₂Si increases the hardness values of the composite, however its variation is in limited range only. The tensile test results revealed that the tensile strength of the composite decreases slightlywith increase in silicon percentage in the composite. Compressive strength has been improved with increase in silicon percentage.

Keywords:Mg-Al/ Mg₂Si, in-situ composite, mechanical properties.

G. Manjunath *et al*/International Journal of ChemTech Research, 2017,10(14): 88-92.
