

International Journal of PharmTech Research

CODEN (USA): IJPRIF, ISSN: 0974-4304 Vol.9, No.4, pp 261-265, 2016

A Research Article on Phytochemical and Physicochemical Evaluation of Leaves & Stems of Kalanchoe Crenata (Adrews) Haw

Manisha Bhatti

Chandigarh University Gharuan (Mohali) 140413, India

Abstract : Kalanchoe crenata Andr. (Crassulaceae) is a fleshy herbaceous plant used in the Agrican traditional medicine as remedies against inflammation, earache, headache, asthma, palpitation, abdominal pain, convulsion and general debility ^[1]. The present research includes phytochemical and physicochemical evaluation of leaves & stems of *Kalanchoe crenata*. **Key Words :** *Kalanchoe crenata*, phytochemical evaluation, physicochemical evaluation.

Introduction

*Kalanchoe crenata (*Crassulaceae) is widely used in Africa for the treatment of inflammatory diseases ^[1]. *Kalanchoe crenata* is probably native to tropical and South Africa naturalized in Brazil, South and South East Asia. In Java it is mostly found in the east on the hot and dry eastern slope of the mountains.

Materials and Methods

Authentication of Plant Material by Morphological Characters:

K. crenata whole plant was collected from Landran campus was subjected to first morphological identification and followed by authentication by Taxonomist Dr. H.B. Singh, Chief Scientist and Head, Raw Materials Herbarium and Museum (RHMF), NISCAIR, New Delhi. A herbarium specimen of these plants is preserved in the department, Chandigarh College of Pharmacy, Landran (Mohali) for the future reference CCP/HB/MB/02.

Collection and Preparation of Plant Materials:

K. crenata complete plant was collected in bulk quantity from Landran campus, Mohali (Punjab) in month of July after confirmed authenticity. Leaves and stems were manually separated. The plant material were washed with water to remove soil, mud, debris and other adhering materials and dried thoroughly in air under shade at room temperature. Coarse powdered of each drug was prepared, passed through sieve no. 40 and stored in air tight containers.

Physicochemical Evaluation:

Determination of Ash values

Ash values for the leaves & stems of plant were determined as given below:

Total Ash

Accurately weighed 2 g of air-dried powder of leaves & stems samples were taken in a tarred silica crucible and incinerated at a temperature not exceeding 450^oC in muffle furnace until free from carbon, cooled in desiccators and weighed. This was then reheated until the difference between two consecutive weighing is not more than 1mg. percentage of total ash was calculated with reference to air- dried drug ^[2, 3].

Acid Insoluble Ash

The ash so obtained in the procedure for total ash was boiled with 25ml of 2M HCL for 5minutes. The insoluble matter is collected in a crucible or on an ash less filter paper, washed with hot water and ignited. The residue obtained is cooled in a desiccator and weighed. The percentage of acid- insoluble ash was calculated with reference to air-dried drug separately.

Water Soluble Ash

The total ash content obtained was boiled separately for 5min with 25ml of water. The insoluble matter was collected on a crucible or ash less filter paper, washed with hot water and ignites for 15minutes at a temperature not exceeding 450° C. Weight of the insoluble residue was subtracted from the weight of the ash and the difference in the weight represented the water-soluble ash. The percentage of water-soluble ash was calculated with reference to air-dried drug separately. ^[2, 3]

Fluorescence Analysis

Various tests were used to determine the fluorescence characteristics of the powder drug as well as extract using various reagents such as picric acid, wagner's reagent, dragendroff's reagent, nitric acid, fehling's solution, glacial acetic acid, 1M NaOH, 5%CuSO₄ and 5%AgNO₃ and observe under short UV, long UV and day light. The fluorescence analysis of drug & extracts helps to identify the drug with specific fluorescent colors and also to find out the fluorescent impurities. The study of fluorescence analysis can be used as diagnosis tool for testing adulteration ^[4, 5].

Phytochemical Evaluation:

Successive Solvent Extraction

100gm of powder drug was packed and then extracted successively using the various solvents in order of increasing polarity in a sox let apparatus for 4-6 hrs. The solvents used for extraction were petroleum ether $(60^{0}-80^{0})$, benzene, chloroform, acetone, ethanol, and water. Each time before extracting with the next solvent the powder material was dried in an air oven below 50^{0} C. Finally the marc obtained is macerated with water for 48 hours to obtained aqueous extract. The completion of extraction was confirmed by evaporating a few drops of each extract from the thimble on a watch glass and ensuring that no residue remained after evaporation of the solvent ^[2].

Determination of Extractive Values

The liquid extracts obtained with different solvents were collected separately. The extracts were concentrated by distillation until thick viscous residue remained in distillation flask. The final volumes of extracts were evaporated to dryness below 60° C, dried in vaccum desiccator and weighed. Extract was taken in a previously tarred evaporating dish. The solvent was completely evaporated and the residue was weighed. The percentage (w/w) of dry extract was calculated on the basis of dried material.

Qualitative Analysis of Extracts:

In the present study, the qualitative chemical tests was performed for all successive extracts of leaves and stems of *K. crenata* to determine the phytoconstituents such as alkaloids, glycosides, tannins, phytosterols, phenolic acids, flavonoids etc. These chemical tests indicate the presence or absence of particular constituents ^[2, 3, 6].

Results:

Physicochemical Evaluation:

Ash Values:

Various types of Ash Values (Total Ash Value, Acid Insoluble and Water Soluble Ash) were found to be higher in stems than leaves (shown in table 1). The total ash values of leaves & stems were found to be 8% & 12.8 % in case of *K. crenata*. Highest ash value of stems revealed the presence of inorganic materials such as carbonates, silicates and oxalates etc. as heating lost organic materials in the form of CO_2 left behind the inorganic compounds.

Table: 1 Determination of Total Ash value of leave	s & stems of K. crenata
--	-------------------------

Plants	Total Ash Value (%w/w)	Water Soluble (%w/w)	Acid Insoluble (%w/w)
<i>K. crenata</i> (L)	8±0.14	2.92±0.16	1.45±0.15
<i>K. crenata</i> (S)	12.8±0.19	4.12±0.13	3.01±0.36

L- Leaves: S- Stems

Extraction Yield

Extraction Yield for each of successive solvent extract obtained is weighed and its physical appearance and yield are reported in **Table 2 and Figure 1** demonstrate that the water soluble extractive values in leaves and stems of *K. crenata* was higher than their respective alcohol soluble extractive values, which revealed that the presence of more water soluble compounds in these drugs.

Table: 2 Percentage Yield of Successive Solvent Extracts of Leaves & Stems of K. crenata

S. No	Extract	Leaves (%w/w)	Stems (%w/w)
1	Pet. ether $(60-80^{\circ})$	5.36	1.56
2	Benzene	0.46	0.17
3	Chloroform	0.77	0.32
4	Acetone	4.32	1.76
5	Ethanol	5.32	2.73
6	Water	11.4	6.87

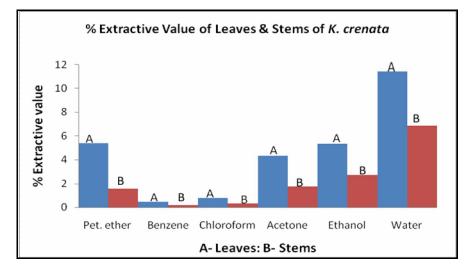


Figure: 1 Comparison of Successive Extractive Values of Leaves & Stems Extracts of K.crenata

S.	Fluorescence Test	Leaves			Stems		
no.							
		Day Light	Short UV	Long UV	Day Light	Short UV	Long UV
			254 nm	365 nm		254 nm	365 nm
1	Dry Powder	Light	Brown	Dark	Dark Brown	Dark brown	Blackish
		Brown		brown			brown
2	Powder + Conc.	Yellow	Light	Green	Yellowish	Brown	Dark Brown
	HNO ₃		Green		Brown		
3	Powder + Conc. HCl	Light	Green	Brown	Light	Green	Yellowish
		Brown			Brown		Brown
4	Powder + Glacial	Light	Green	Brown	Colourless	Colourless	Green
	acetic acid	Yellow					
5	Powder + Aq.	Bluish	Bluish	Black	Dark green	Blackish	Black
	NaOH	green	green			green	
6	Powder + Alc.	Pale	Green	Green	Pale yellow	Green	Green
	NaoH	yellow			-		
7	Powder + 5%	Brown	Bluish	Dark	Cream	Colourless	Greenish
	AgNO ₃		green	brown			white
8	Powder + Wagner	Dark red	Green	Dark	Dark red	Black	Brownish
	reagent			brown			black
9	Powder + 10%	Dark	Green	Colourless	Yellow	Yellowish	Green
	Picric acid	yellow				green	
10	Powder +	Reddish	Black	Brownish	Reddish	Black	Reddish
	Dragondorff reagent	brown		black	brown		black
11	Powder + Fehling	Blue	Colourles	Dark blue	Blue	Colourless	Blue
	Solution A		S				
12	Powder + 50%	Reddish	Greenish	Black	Reddish	Black	Black
	Conc.H ₂ SO ₄	brown	black		brown		

Table: 3 Fluorescence Analysis of Powdered Leaves & Stems of K. crenata

Phytochemical Screening:

The active constituents have been identified by performing various qualitative tests in the various successive extracts of leaves and stems of K. *crenata*, are alkaloids, flavonoids, carbohydrates, sterols, phenols and glycosides.

The phytochemical constituents present in successive extracts of leaves & stems of *K. crenata* are presented in **Table 4-5**.

Table 4: Phytochemical Screening of Various Extracts of Leaves of K. crenata

S.	Туре	Pet. Ether	Benzene	Chloroform	Acetone	Ethanol	Water
No.	of constituents						
1	Alkaloid	-	-	-	-	+	-
2	Flavonoid	-	-	-	+	+	-
3	Saponins	-	-	-	+	+	+
4	Carbohydrate	+	+	+	+	+	+
5	Phytosterols	+	+	+	+	+	+
6	Tannin	-	-	-	+	+	+
7	Phenolic	-	-	+	+	+	-
8	Coumarin	-	-	-	-	-	-
9	Cardiac glycoside	-	-	+	+	+	+
10	Anthraquinones	-	-	+	+	-	-
11	Essential oil	+	-	-	-	-	-

• + = Present; - = Absent

S.	Туре	Pet. Ether	Benzene	Chloroform	Acetone	Ethanol	Water
No.	of Constituents						
1	Alkaloid	-	-	-	-	+	-
2	Flavonoid	-	-	-	+	+	-
3	Saponins	-	-	-	+	+	+
4	Carbohydrate	+	+	+	+	+	+
5	Phytosterols	+	+	+	+	+	+
6	Tannin	-	-	-	+	+	-
7	Phenolic	-	-	-	+	+	
8	Coumarin	-	-	-	-	-	-
9	Cardiac glycoside	-	-	-	+	+	-
10	Anthraquinones	-	-	-	-	-	-
11	Essential oil	-	-	-	-	-	-

Table 5: Phytochemical Screening of Various Extracts of Stems of K. crenata

• + = Present; - = Absent

After phytochemical screening of different extracts of leaves and stems, it was found that the plant contains phytosterols, phenolic acid, flavonoids, tannins, alkaloids etc. But the leaves also contain cardiac glycosides and essential oil.

Discussion

Total ash value, water soluble and acid insoluble were evaluated. It was found to be highest in stems part of plants. The ash values of leaves & stems were found to be 8% & 12.8 % respectively. This revealed that the presence of inorganic materials such as carbonates, silicates, oxalates etc. The percentage yields for successive extracts were varying to the presence of polar & non-polar components. Extraction yields demonstrate that the water soluble extractive values in leaves and stems of *K. crenata* was higher than their respective alcohol soluble extractive values, which revealed that the presence of more water soluble compounds in these drugs. The plant parts (leaves and stems) and their extracts shows different characteristic colours in day light, short UV, long UV with different reagents, which can used as distinguishing parameters for parts of plant from each other. The different characteristic colours were due to many chemical constituents present in them and it can give an idea of the quality and purity of material. Preliminary phytochemical screening of extracts of leaves and stems revealed that the plant contains phytosterols, phenolic acid, flavonoids, tannins, alkaloids, saponins etc. The leaves contain cardiac glycoside and essential oils also.

References:

- 1. Sofowora A, Medicinal plants and traditional medicine in Africa, Polygraphie ventures Ltd Ibadan. Nigeria. (2)(1993) 207-209.
- 2. Kokate C.K, Practical Pharmacognosy, Vallabh Prakashan, Delhi. 125 (2001) 108-111.
- 3. Kokate C.K, Purohit A.P and Gokhle S.B, Textbook of Pharmacognosy, Nirali prakashan, pune. (1996) 533-537.
- 4. Adediwura F.J. and Ayotunde A, Phytochemical and pharmacognostic studies of telosma africanum colville leaf and stem, IJPSR 3(6) (2012) 1860-1862.
- 5. Selvam A.B.D and Bandyopadhyay S, Fluorescence analysis on the roots of *Rauvolfia Serpentina (L.)* Benth. Ex Kurz under UV Radiation. 24 (4) (2005) 1-4.
- 6. Wagner H, Blandt S, and Zgainsky E.M, Plant Drug Analysis, sprigher veralg, Heidelberg170 (1996)176.