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Abstract: In this article, we propose and study a three dimensional continuous time prey-
predator model where the predator is exposed to the risk of disease with Holling type II
functional response and we introduced combined harvesting to all the populations.  The model
consists of prey, susceptible predator and infected predator.   We assumed that the infected
predator do not predate the prey species. In this work we establish the local asymptotic stability
of various equilibrium points to understand the dynamics of the model and also the global
stability of the positive equilibrium solution are discussed by constructing a suitable Lyapunov
function. Also the active feedback controls are introduced in this model and analysed.  Finally,
numerical simulations are given to illustrate the analytical results with the help of different sets
of parameters.
Keywords: Prey-predator,  Combined Harvesting,  Global stability,  Lyapunov function.

1.  Introduction

A simple  differential equations prey-predator model to describe the population dynamics of two
interacting species was first proposed by an Italian mathematician Vito Volterra and the same differential
equations was also derived by Alfred Lotka, a chemist. One of the earliest prey-predator models which are
based on sound mathematical logic is the Lotka-Volterra model, which forms the basis of many models used in
population dynamics.  There are four factors in Lotka-Volterra model such as growth rate of prey, predation
rate, mortality rate of predator and conversion rate to change prey biomass into predator population as well as
prey population, which grows logistically.

Eco-epidemiological modelling provides challenges in both applied mathematics and theoretical
ecology.  Anderson and May(1986) [1], were the first who merged ecology and epidemiology and formulated a
prey-predator model where the prey species were infected by some infectious diseases.   Further, in recent years
eco-epidemiological system with disease in predator become most interesting part of research among all
mathematical models.  Such systems governed mainly by continuous time models and these studies investigates
stability, boundedness and persistence.   Krishnapada Das et al.  and Prasenjet Das et al. [2-3] studied the prey-
predator system with disease in the predator population and discussed the chaos in this system.  Pierre Auger et
al.,    Ezio  et  al.,  Pallav  et  al.,   and  so  many  authors  have  studied  the  prey-  predator  system with  disease  in
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predator [4-6].  Many authors have explored the population dynamics in eco-epidemiological systems ; (see for
example [7-8]).

Now a days the study of Holling type functional responses like Holling type II, III and IV functional
responses in population dynamics has attracted very much attention.  To mode the phenomena of predator,
Holling (1959b, 1965) [9-10], suggested three different kinds of functional response for different kinds of
species. The functional responses depend on the prey density.   The form of functional response ( )xj  have
been developed during various different processes of energy transfer in prey-predator systems, which were
proposed by different backgrounds and based on experimental data.  These three forms are ( )x xj m=  ,

( ) ( )
xx

a x
m

j =
+

 and ( ) ( )
2

2

xx
a x
mj =
+

 (sigmoidal), which are monotonic function with respect to x , where m

is the maximum predation rate and a   is  the half saturation rate, that is, if we consider the fact that in general, a
single individual can feed only until the stomach is full, a saturation function indicate the intake of food.  In

addition, the form ( ) ( )2

xx
a x
mj =
+

 is called Holling type IV functional response, which is non-monotonic

function with respect to x .  The qualitative analysis of prey-predator systems have been done by several papers
[11-14].

Harvesting policy is obviously one of the major problems in ecology, eco-epidemiology, economics etc.
The harvest of population species are mostly practiced in agriculture, fishery, forestry and population
management.  To control the oscillations which arise in eco-epidemiological systems, here we study the role of
harvesting in an eco-epidemiological system where the prey, susceptible predator and infected predator are
subjected to combined harvesting [15-16].  So many authors work on the analysis of prey-predator system with
harvesting [17-18].  However, not much work has been dealt with stability analysis of three species continuous
time models involving intra-specific competition and mortality with nonlinear feedback controls.  The
interaction between organisms or species in ecology is called competition.  Due to limited resources like food,
water, space etc.., competition between the species affect the community structure.  Intra-specific competition is
a particular form of competition in which the members of the same species competes for the same resources in
an ecosystem [19].

The subject of control of the dynamical system is growing rapidly in many different fields such as
ecological models, biological systems, aerospace science, structural engineering and economics.  The nonlinear
feedback controls, adaptive control etc... on prey-predator system has been studied by many authors [20-21].
In this work, the harvested prey-predator system monotonic functional response and with prey intra-specific
competition is shown to control the chaos in the system.

          This paper is organized as follows:  In section 2: we have given the basic model and modified it by
introducing non-selective harvesting in all the populations, intra-specific competition in prey and mortality rate
in susceptible predator. In section 3: we prove for the boundedness of the non-dimensionlized model.  In section
4:  we find out the existence of the equilibrium points.  In section 5: Local stability analysis for the trivial, axial,
disease free and interior equilibrium points are presented.  In section 6: Global stability analysis for the
coexistent equilibrium point by constructing suitable Lyapunov function is presented. In section 7: The
asymptotic stability of the total system (7) with the active feedback controls by using suitable Lyapunov
function  is  presented.  In  section  8:   Numerical  simulations  are  carried  out  to  support  our  analytical  results.
Finally, the last section 9, is devoted to the conclusion and remarks.

2.  The Mathematical Model of the System

In this section, we study the dynamics of the continuous time three species prey-predator populations in
which we will use the mathematical tools and biological assumptions for modelling the three species prey-
predator system which consists of one prey and two predators.
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2.1  The Basic Model and Assumptions

In this section, we will describe the three species continuous time prey-predator system which consists of
prey, susceptible predator and infected predator.  Such a system can be describe by the following set of non-
linear differential equations:

In this system we assume that the susceptible predator only predates on prey.  Such system can be described by
the following set of nonlinear differential equations:

( )

( )

2

1 ,

,

dN NrN g N S
dt K
dS mg N S QSI
dt
dI QSI d I
dt

æ ö= - -ç ÷
è ø

= -

= -

  (1)

The coefficients 1, , , , ,r k a dm b  and 2d in model (1) are all positive constants and their ecological interpretation
are as follows:

( )N t  : the number of the  prey population at time t,
( )S t :  the number of  the susceptible predator population at time t,
( )I t  :the number of the infected predator population at time t,

r :  represents the intrinsic growth rate of prey
K :  denotes the carrying capacity of prey;
m : uptake constant of predator
Q :  effective transmission rate of disease

2d : death rate of infected predator

We assume  that  the  infected  predators  do  not  predate  prey  which  is  very  much  realistic  in  real  situation  and
only susceptible predators predates on prey.

Hence we will consider these response functions as of Holling type II which is given below:

( ), NSg N S
a N

=
+

 is Holling type II functional response for prey and susceptible predator.

In this

a :  half saturation constant

Then the system (1) becomes:

2

1dN N NSrN
dt K a N
dS mNS QSI
dt a N
dI QSI d I
dt

æ ö= - -ç ÷ +è ø

= -
+

= -

               (2)

2.2  Assumption for the Modified System

Now to formulate the modified mathematical model of a prey-predator system with disease in predator
population involving intra-specific competition in predator and non-selective harvesting in all the populations,
we make the following assumptions:
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A1. In the absence susceptible predator, prey population grow logistically with intrinsic growth rate ( )0r > ,
carrying capacity ( )0K >  and then we have

1dN NrN
dt K

æ ö= -ç ÷
è ø

 (3)

A2. In the presence of infection, the predator population is divided into two groups namely susceptible
predator denoted by ( )S t  and infected predator denoted by ( )I t  at all time t , the total population is

( ) ( ) ( )X t S t I t= + .

A3. The disease is spread among the predator population only and the disease is not genetically inherited.
The infected predator populations do not recover or become immune.  We assume that the disease transmission
follows the simple law of mass action ( ) ( )QS t I t  with Q as the transmission rate.

A4. The susceptible predator ( )S t is removed by the death rate ( )1 0d > (by natural death of susceptible
predator) .

A5. We assume that the only the susceptible predator population consumes prey with Holling type II
functional response function:

( ) ( ),  , 0NSfg N S a
a N

= >
+

  (4)

That is,  is the Holling type II functional response for susceptible predator and its prey.   In this a    is the half
saturation constant and 0a > .

A6.  We have considered that the prey population ( )N t experiences intra-specific competition ( )  0x >  due to
the limited number of food resources.

A7.  The prey population ( )N t  , susceptible predator ( )S t and infected predator ( )I t are removed by combined
harvesting rate 1 2,Eq Eq  and 3Eq where ( ) ( ) ( )1 2 30 ,  0 ,  0q q q> > > and ( )0E >  (non selective harvesting).

Therefore the modified of the model (2) becomes:

2
1

1 2

2 3

1dN N NSrN N p EN
dt K a N
dS mNS QSI d S p ES
dt a N
dI QSI d I p EI
dt

xæ ö= - - - -ç ÷ +è ø

= - - -
+

= - -

(5)

Where

x : the prey`s crowding effect.

E :  the combined external effort devoted to non-selective harvesting of prey by the external harvester (not by
predator), and it is an external effort of susceptible predator and infected predator.

1p    :  the catchability coefficient of the prey

2p   :  the catchability coefficient of the susceptible predator

3p    :  the catchability coefficient of the infected predator.
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We assume that the less effective predator shall be easier to harvest that is, 2 1p p>  ,we also assume that
the infected predator not become susceptible again and also the disease does not affect the ability of the infected
predator attacking prey.

With initial data 0 ,  0,  0x y z³ ³ ³  and the coefficients 1 2 1 2,  ,  ,  ,  ,  ,  ,  ,  ,  ,r K Q a m d d E p px  and

3p in model (5) are all positive constants.

2.3.    Nondimensionalization

Now to reduce the number of the system parameters we will transform the system (4) to
the nondimensional form by using the following transformation of the variables:

,  ,  ,N S Ix y z t r
K K K

t= = = =                 (6)

The modified Holling type II prey predator with infected predator dynamics  that is, using the transformation
(6)  the system (5) takes the nondimensional form:

( ) 2
1

1 2

2 3

1dx xyx x x x
dt b x
dy xy yz y y
dt b x
dz yz z z
dt

h a

m
b d a

b d a

= - - - -
+

= - - -
+

= - -

 (7)

where the relations between the nondimensional and dimensional parameters are given by:

31 2
1 2 3

31 2
1 2 3

,  ,  ,  ,  ,  ,  ,

 ,   ,

dd dQK a m Kb
r Kr r r r r r

EpEp Ep
r r r

xb m h d d d

a a a

= = = = = = =

= = =
(8)

The system (7) is more simplicity than (8) for the mathematical study, since the number of system parameters
has been reduced from 12 to 10 only.

Now we will analyze the system (7) with the following initial conditions:

( ) ( ) ( )0 0,  0 0,  0 0x y z> > > (9)

The conditions (9) represent the conditions of positivity or biologically feasibility of the densities of
prey, susceptible predator and infected predator populations respectively.

And also we observe that the right-hand side of the system of equations (7) is a smooth function of variables
( ),  ,x y z  and the parameters ( )1 2 3 1 2 3, , , , , , , , ,bb m h d d d a a a ,  with  the  result  that  these  quantities  are  non-
negative.  Hence the local existence and uniqueness properties hold in the positive octant.  In the third equation
of (7), if 0z =  gives ( ) 0z t = , which follows that 0z =  is  an  invariant  subset,  that  is, 0z =  if  and  only  if

( ) 0z t =  for  some t . Thus ( ) 0z t > ,  for  all t  if ( )0 0z > .   The  same  argument  follows  for  the  second

equation of (6) if 0y =  and for the first equation of (6) if 0x = .  Hence ( ) 0y t > , for all t  if ( )0 0y >  and

( ) 0x t > , for all t  if ( )0 0x > .
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3.  Analysis of the Model

3.1 Existence and Dissipativeness

The model system (7) are continuous and have continuous partial derivatives on
( ){ }3 3, , : 0,  0,  0x y z R x y z+ = Î ³ ³ ³R  with interaction functions ( )1,2,3if i = .  Hence the solution of the system

(6) with non-negative initial condition exists and is unique, as the solution of the model system (6) initiating in
the non-negative octant is bounded.  And also, the system is said to be dissipative that is, all population are
uniformly limited in time by the environments, if all population initiating in 3

+R  are uniformly limited by their
environment.  The following theorem gives the boundedness of model system (7).

Theorem 1: All the non-negative solutions of the model system (7) that state in 3
+R  are uniformly bounded .

Proof:

Let ( ) 0,  ( ) 0    ( ) 0x t y t and z t> > >  be any solution of the system with positive initial conditions.
Now we define the function

( ) ( ) ( ) ( )W t x t y t z t= + + (10)

where :W R R+ +® is well defined and differentiable on some maximal interval.
Now, time derivative gives we get
dW dx dy dz
dt dt dt dt

= + + (11)

( ) ( ) ( )22      1 2 x x x Wh h h h= - + - - - -W (12)

where d = min 1 2 3 1 2(1, , , , , )a a a d d

( )1 2dW W
dt

h+ W £ - (13)

( )1 2 ( )dW W say
dt

h j+ W £ - =

dW W
dt

j+ W = (14)

Now applying the theory of differential inequality (Birkoff and Rota, 1982) [23], we obtain

( ) ( )0 0 00 , , , , tW x y z W x y z ej -W£ £ +
W

(15)

And for t ® ¥ , we get

( )0 , ,W x y z j
£ £

W
(16)

Hence, all the solutions of the system (7) that initiate in 3
+R  are confined in the region B where,

( ) 3, , :  0 ,     0B x y z W for anyj e e+
ì ü= Î £ £ + >í ýWî þ

R (17)

Which implies all species are uniformly bounded for any initial value in 3
+R .  And also according to the above

theorem we assume that their exists ( )1 2 3, , 0a a a >  such that-

( ) ( ){ }3
0 0 0 1 2 3, , , , : 0 , 0 , 0W x y z x y z x y za a a+Ì = £ £ £ £ £ £� , ( )0 0 0, , 0x y z" ³ where ( )0 0 0, , 0x y zW ³  is the omega

limit set of the orbit initiating at ( )0 0 0, ,x y z .  Thus the model system (7) is uniformly limited in time by their
environment.  This is the complete proof.

4.  Existence of Equilibria

The existence and stability condition for them as follows:



Suresh Rasappan et al /Int.J. PharmTech Res. 2016,9(1),pp 097-112. 103

(1) The trivial equilibrium point ( )0,0,0TE  always exists.

(2) The axial equilibrium point ( ),0,0AE x  always exists as the prey population grows the carrying capacity in

the absence of predation,  in this 11
1

x a
h

-
=

+
 .

The predator population dies in the absence of prey.  Therefore, points ( )10, ,0a   and ( )20,0,a  with 1, 2j =  does
not exists.

(3)  In the absence of infected predator species the susceptible predator species can survive on its prey.

Hence the  boundary equilibrium point ( ), ,0BE x y  exists in the interior of positive
 quadrant of xy -plane, where x  and y  are given as follows:

( )1 2

1 2

b
x

d a
m d a

+
=

- -
   and 2 3y d a

b
+

=

(4) Neither y  nor z can survive in the absence of prey species x , hence there is no equilibrium point in yz

plane.  Due to the extinction scenario of susceptible predator, there is no equilibrium point in xz plane.

(5) The positive equilibrium point ( )* * * *, ,E x y z exists in the interior of the first octant if and only if there is a
positive solution to the following algebraic non-linear system:

( )

( )

( )

1 1

2 1 2

3 2 3

, , 1 0

 , , 0

, , 0

yf x y z x x
b x

xf x y z z
b x

f x y z y

h a

m b d a

b d a

ü= - - - - = ï+ ï
ï= - - - = ý

+ ï
ï= - - =
ïþ

(18)

In ( )* * * *, ,E x y z ,

( ) ( ) ( )

( )

2 2 3
1 1 1

*

1 1 4 1

2 1

b b b b b b
x

d a
a h a h h a

b

h

æ ö+æ ö
- - - + + + - - + - +ç ÷ç ÷

è øè ø=
+

* 2 3y d a
b
+

= and

*
*

1 2*

1 xz
b x
m d a

b
é ù

= - -ê ú+ë û

The Jacobian matrix ( ), ,J x y z   associated with model system (7) evaluated at ( ), ,x y z  is given by

( )

( )

( )

12

1 2, , 2

2 3

1 2 2 0

0

x y z

by xx x
b xb x

by xJ z y
b xb x

z y

h a

m m
b d a b

b b d a

é ù- - - - -ê ú++ê ú
ê ú

= - - - -ê ú
++ê ú

ê ú- -ê ú
ê úë û

(19)
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5.  Stability Analysis Of Boundary And Positive Equibruim

Theorem 2:

The trivial equilibrium point
TE  is locally asymptotically stable if

1 1a >  and is unstable otherwise.

Proof:

The Jacobian matrix ( )TJ E  at the equilibrium point
TE is

( )
1

1 2

3

1 0 0
0 0
0 0

TJ E
a

d a
a

-é ù
ê ú= - -ê ú
ê ú-ë û

(20)

Since 2 3,l l are negative, hence
TE is asymptotically stable in the 2 3x x  direction and  since

1 11l a= -
TE is stable 1 0l < .  Hence the theorem.

Theorem 3:

The axial equilibrium point
AE  is locally asymptotically stable if

( )
( )1 21

1 2

1
2 1

b
x

d aa
h m d a

+-
< <

+ - -
 and is

unstable otherwise.

Proof:

The Jacobian matrix ( )AJ E  at the equilibrium point
AE is

( )

1

1 2

2 3

1 2 2 0

0 0

0 0

A

xx x
b x

xJ E
b x

h a

m d a

d a

é ù- - - -ê ú+ê ú
ê ú= - -ê ú+
ê ú- -ê ú
ê úë û

(21)

where
11

1
x a

h
-

=
+ , in this 3l is negative.  Hence is locally asymptotically stable if

1 2, 0l l < .   Hence the theorem.

Theorem 4:

The axial equilibrium point
BE  is locally asymptotically stable if 1 20,  0S S> >  and 1 3 2 0S S S- > is

unstable otherwise.

Proof:

The Jacobian matrix ( )BJ E  at the equilibrium point BE is

( )
11 12

21 22 23

33

0

0 0
B

b b
J E b b b

b

é ù
ê ú= ê ú
ê úë û

(22)
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where

( )11 1 1221 2 2 ,by xb x x b
b xb x

h a= - - - - = -
++

( )21 22 1 2 232 ,   ,by xb b b y
b xb x

m m d a b= = - - = -
++

and
33 2 3b yb d a= - -

The characteristic equation of the above Jacobian matrix is
3 2

1 2 3 0S S Sq q q+ + + =  (23)

where
( )

( )

1 11 22 33

2 11 22 11 33 22 33 12 21

3 33 12 21 11 22

,
,

S b b b
S b b b b b b b b
S b b b b b

= - + +

= + + -

= -

If 11 22 0,b b+ < 33 0b < and 12 21 11 22b b b b< , then it easy to check that 1 20,  0S S> >  and

1 3 2 0S S S- > .  Using Routh- Hurwitz criteria, it is clear that the system (7) is stable at  the boundary
equilibrium point

BE if the conditions 1 20,  0S S> >  and 1 3 2 0S S S- >  hold.  Hence the disease free system
is locally stable under these conditions.  But the  disease free equilibrium BE is unstable if at least one of these
conditions is violated.

Theorem 5:

The interior equilibrium point *E  is locally asymptotically stable if 1 20,  0w w> >  and

1 3 2 0ww w- > is unstable otherwise.

Proof:

The Jacobian matrix ( )*J E  at the equilibrium point *E is

11b ( )
11 12

*
21 22 23

32 33

0

0

a a
J E a a a

a a

é ù
ê ú= ê ú
ê úë û

(24)

where

( )
* *

* *
11 1 122 **

1 2 2 ,by xa x x a
b xb x

h a= - - - - = -
++

( )
* *

* *
21 22 1 2 232 **

,    ,by xa a z a y
b xb x

m m
b d a b= = - - - = -

++

and
* *

32 33 2 3,a z a yb b d a= = - -
The characteristic equation of the above Jacobian matrix is

3 2
1 2 3 0l w l w l w+ + + = (25)

where
( )

( )

1 11 22 33

2 11 22 11 33 23 33 32 23 12 21

3 11 23 32 33 12 21 11 22

,
,

a a a
a a a a a a a a a a
a a a a a a a a

w

w

w

= - + +

= + + - -

= + -
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If 11 22 0,a a+ < 33 0a < and 12 21 11 22a a a a< , then it easy to check that 1 20,  0w w> >  and

1 3 2 0ww w- > .  Using Routh- Hurwitz criteria, it is clear that the system (7) is stable  at the interior
equilibrium point *E if the conditions 1 20,  0w w> >  and 1 3 2 0ww w- > hold.

6.  Global Stablility Of ( )* * * *, ,E x y z

We have determined the conditions for global stability of interior equilibrium point ( )* * * *, ,E x y z

through the following theorem by constructing suitable Lyapunov function.

Theorem 6: Assume that the positive equilibrium point ( )* * * *, ,E x y z  is locally asymptotically stable then, it is
a globally asymptotically stable in the interior of positive octant assuming the 1m = .

Proof:

In order to prove the global stability, we define the following Lyapunov function

( ) ( ) ( ) ( )1 2 3, , , , + , , , ,G x y z G x y z G x y z G x y z= + (26)

where * *
1 *ln xG x x x

x
= - - (27)

* *
2 *ln yG y y y

y
= - - (28)

* *
3 *ln zG z z z

z
= - - (29)

Which implies G  is a continuous function on integer 3
+R  , are positive constants to be  determined.

Now in order to investigate the global dynamics of the non-negative  equilibrium point ( )* * * *, ,E x y z  of  the
model system (7) the derivative of Gwith respect to time along the solution of the system (26) is
computed as

31 2+ dGdG dGdG
dt dt dt dt

= + (30)

The time derivative of the above function will be

( ) ( ) ( ) ( )* * *+x y zG t x x y y z z
x y z

= - - + -
& & && (31)

Using the set of equations (7) and (31) we obtain

( ) ( )

( )

( ) { }

*
1

*
1 2

*
2 3

, , 1 yG x y z x x x x
b x

xy y z
b x

z z y

h a

m b d a

b d a

ì ü= - - - - -í ý+î þ
ì ü+ - - - -í ý

+î þ

+ - - -

&

(32)

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ){ }

*
* * *

*

*
* *

*

* *

y y
x x x x x x

b x x

x x
y y z z

b x x

z z y y

h

m
b

b

ì ü-ï ï= - - - - - -í ý
+ -ï ïî þ

ì ü-ï ï+ - - -í ý
+ -ï ïî þ

+ - -

(33)

Now choosing 1m = , we get
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( ) ( ) ( )2 2* * , ,G x y z x x x xh= - - - -& (34)

  Which is a negative definite function. This shows that the interior equilibrium point ( )* * * *, ,E x y z  is
globally asymptotically stable. Hence the Lyapunov theorem implies that ( )* * * *, ,E x y z is globally
asymptotically stable.

7.    A Prey Predator Model with Vulnerable Infected predator consisting of Active feedback controls

In this section, we stabilize the chaos of prey-predator system with infected predator involving prey
competition by using active control method.  We constructed  a suitable Lyapunov function, through this
function we stabilize the system (7) by using Lyapunov stability theory [22].

Theorem 7: The prey-predator system with infection in predator, Holling type II functional response and
involving competition in prey (7) and its slave system  are globally and exponentially stable by using active
feedback controls.

Proof:

Consider our system (7) with dynamics , ,x y z& & &  as master system which consists of three  states , ,x y z .

Now consider the slave system as follows:
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Now let us define the stabilization errors as:
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The derivative of (36) along (35) and (7) is as follows:
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where 1 2 3, ,u u u  are active feedback controllers, which is the function of the state  variables given below:
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where 1 2,g g  and 3g are positive constants.
Substitute (38) in (37), we get the error dynamics,
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Let us construct  Lyapunov function which is given as follows:
2 2 2

1 2 3 1 2 3
1 1 1( , , )
2 2 2

V g g g g g g= + + (40)

Which is a positive definite function on 3� .
Differentiating 1 2 3( , , )V g g g along the trajectories of the error dynamics, we get,

1 2 3 1 1 2 2 3 3( , , )V g g g g g g g g g= + +& & & & (41)
Substitute  the error dynamics (39) in (41), we get

2 2 2
1 1 2 2 3 3V g g gg g g= - - -& (42)

Which is a negative definite function on 3�  .

         Hence by Lyapunov stability theory [22], the error dynamics (39) and the modified Holling
type II functional response system (7) is globally exponentially stable

8.  Numerical Simulation

We  perform  the  numerical  simulations  of  system  (7)  with  the  following  set  of  parameters  and
explaining their complex dynamical nature.  The phase portraits and the corresponding time series graph are
obtained for the system (7).  Parameter values are takes as follows:

Fixed
parameters 1 2 1 2 30.3,   0.055,   1,   0.05,   0.05,   0.03,   0.03, 0.03b h m d d a a a= = = = = = = =  and
varying the disease transmission rateb .
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Figure 1 :  The population variation
withb =2.375 which shows the periodic
oscillations

Figure 2:    The population variation
withb =1.375 which approaches the stable point
(0.8732,0.0578,0.4833)

Figure 4:  The phase portrait b =2.375 which
approaches the stable point                                       (
0.9098,0.0131,0.2433)

Figure 5:   The phase portrait b =1.375 which
approaches the stable point
(0.8732,0.0578,0.4833)

When the disease transmission rate b=2.375, the periodic oscillations between prey, susceptible
predator and infected predator shown in figure 1 and the corresponding phase portrait is shown in figure 4,
which approaches the stable point.

       When we reduce the disease transmission rate b=1.375,  the population density approaches the stable
point (0.8732,0.0578,0.4833) which shows in figure 2, in this we observe that the dynamic behaviour of the
infected predator is reduced and the prey density is increased and the corresponding phase portrait is shown in
figure 5.
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Figure 3:    The dynamical behaviour of the population variation withb=0.255

When we again gradually reduce the disease transmission rate b=0.255, the complex behaviour of the
prey and susceptible predator shown in figure 3 and the chaotic behaviour of the whole population density is
shown in figure 6, and figure 7 shows the chaotic behaviour of the population density when b=0.275.

Figure 6 : The phase portrait b=0.275 which
exhibits chaotic behaviour

Figure 7: The phase portrait b=0.255which
exhibits chaotic behaviour

Now, let us perform the numerical simulations of non linear control system (38) with the following set
of parameters and explaining their stabilization.  The time series graph and the corresponding phase portrait are
obtained for the controlled system (38).  Same parameter values are takes as follows:

Fixed parameters 1 20.3,   0.055,   1,   0.05,   0.05b h m d d= = = = = and varying the disease transmission
rate b and also harvesting rate 1 2 3 ,  ,a a a .
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Figure  8:     The  population  variation  with 0 .245 2 .475b< <  and 1 2 30.01 , , 0.033a a a< < which
approaches the point (0,0,0)

Figure 9:     The phase portrait  with 0 .245 2 .475b< <  and 1 2 30.01 , , 0.033a a a< < which approaches
the point (0,0,0)

9. Conclusion

      In this paper we have investigated the dynamical complexities of a harvesting prey-predator system
with infected predator and Holling type II functional response involving prey competition. The boundedness of
the trajectories and existence of equilibrium points are established. The local stability for non-negative
equilibrium points has been analysed. The global stability has been analysed by constructing Lyapunov
function. Also in this work, we have introduced the active feedback controls to the system and analysed.
Finally, numerical simulations are carried out by using MATLAB software package. We have generated phase
plots  and  time  series  diagrams.  Also  the  comparison  between  the  control  and  uncontrol  system  has  been
investigate.
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