Crystal structure of 7-chloro-2,3,3a,4,9,9a-hexahydro-3,9,9-trimethyl-5-nitro-1H-cyclopenta[b]quinoline

G. Sridhar ${ }^{1}$, I. Mohammed Bilal ${ }^{1}$, *D. Easwaramoorthy ${ }^{1}$, S. Kutti Rani ${ }^{1}$ and K. Anand Solomon ${ }^{2}$
${ }^{1}$ Department of Chemistry, B.S. Abdur Rahman University, Chennai 600 048, India
${ }^{2}$ Department of Chemistry, School of Engineering, Dayanand Sagar University, Kudlu gate, Karnataka 560068, India

Abstract

The title compound $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{Cl} \mathrm{N}_{2} \mathrm{O}_{2}$ is the product of reaction between 4chloroaniline and melonal in the presence of cupric nitrate and HCl . The product is the resultant of nitration of the aromatic ring and electrophilic aromatic cyclization. The heterocyclic ring at the center adopts a half-chair conformation and the five-membered ring has an envelope conformation. The crystal structure is stabilized by intra-molecular hydrogen bond. The molecular structure is stabilized by an intra-molecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, with an $S(6)$ ring motif.

Key words: crystal structure, quinolone, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond.

Introduction

Tacrine is used to treat the symptoms of mild to moderate Alzheimer's disease and approved by United States Food and Drug Administration in $1993{ }^{1}$. One of the earliest and biggest changes the brain of Alzheimer's disease is that there is less of a chemical messenger called acetylcholine (ACh). Tacrine slows the breakdown of ACh, so it can build up and have a greater effect. It was the first centrally acting cholinesterase inhibitor approved for the treatment of Alzheimer's disease. The title compound is a congener of tacrine, has also been reported to be effective anti-alzheimeric agents ${ }^{2,3}$.

Experimental

Crystals suitable for xray-diffraction studies were obtained by slow evaporation method. Data collection was carried-out using Oxford Diffraction Xcalibur Sapphire3 with graphite mono-chromatized Mo-K α radiation ($\lambda=0.71703 \dot{A}$). The structure was solved by direct methods and refined on F^{2} by fullmatrix least squares procedures using the SHELXL programs ${ }^{3}$. The hydrogen atoms were identified using difference fourier. was used to create the image. For molecular graphics ORTEP- 3^{4} program and Mercury ${ }^{5}$ were used. The crystallographic data of the molecule is listed in Table-1.

Table: 1 Crystallographic data of the title compound

Empirical formula	C15 H19 Cl N2 O2
Formula weight	294.77
Temperature	296(2) K
Wavelength	0.71073 A
Crystal system, space group	P-1
Unit cell dimensions	$\mathrm{a}=8.9847(13) \dot{\mathrm{A}} \quad \alpha=111.493(4)^{0}$
	$\mathrm{b}=9.1971(7) \dot{\mathrm{A}} \quad \beta=100.432(5)^{0}$
	$\mathrm{c}=9.8207(7) \dot{\mathrm{A}} \quad \gamma=97.188(5)^{0}$
Volume	$726.17(13) \dot{\text { d }}^{3}$
Z, Calculated density	2, $1.348 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.266 \mathrm{~mm}^{-1}$
F(000)	312
Crystal size	$0.19 \times 0.15 \times 0.11 \mathrm{~mm}$
Theta range for data collection	2.30 to 26.33^{0}
Limiting indices	$-11<=\mathrm{h}<=11,-11<=\mathrm{k}<=10,-10<=1<=12$
Reflections collected / unique	$9988 / 2903$ [R (int) $=0.0229]$
$\begin{aligned} & \text { Completeness to theta }= \\ & 26.33 \end{aligned}$	98.2 \%
Max. and min. transmission	0.9713 and 0.9512
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2903 / 0 / 249
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.048
$\begin{array}{lcc} \hline \begin{array}{l} \text { Final } \\ {[I>2 \text { sigma(I) }]} \end{array} & \text { indices } \\ \hline \end{array}$	R1 $=0.0376, \mathrm{wR} 2=0.0978$
R indices (all data)	R1 $=0.0512$, wR2 $=0.1102$
Largest diff. peak and hole	0.244 and $-0.191 \mathrm{e} . \mathrm{A}^{-3}$

Synthesis of the compound

The quinoline derivative was prepared by the condensation 2,6-dimethyl-5- heptenaldehyde and 4chloro aniline in 1:1 molar ratio by refluxing in propan- 2 -ol and nitration of the resulting compound using $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}$ using $\mathrm{H}_{2} \mathrm{SO}_{4}$ as a catalyst. The mixture was left under reflux for 3 h . The solution was then left at room temperature. The solid product formed was separated by filtration, purified by crystallization
with ethanol washed with acetone and then dried in a vacuum over anhydrous calcium chloride (Vimal.et al., 2014). The brown colored product was formed in 86% yield.

Results and Discussion

The title molecule has three fused rings consisting of two six- and one five-membered rings ($\mathrm{A} / \mathrm{B} / \mathrm{C}$). The A / B ring junction is trans-fused and B / C is $c i s$-fused. The central ring B adopts a twist chair conformation with the puckering parameters $q 2=0.441(1)$ and $\varphi 2=193.9(3)$. The C8/C14/C23/C13/C ring has an envelope conformation, with C8 displaced from the other atoms (r.m.s. deviation $=0.026 \AA$) by 0.683 (6) \AA. The puckering are parameters. $q 2=0.422(1)$ and $\varphi 2=174.7(3)$. The packing is stabilized by weak intra-molecular N-H...O, C-H...O interactions. The N1-O2 $\cdots \mathrm{H} 2 \mathrm{~A}$ bond closes an $\mathrm{S}(5)$ ring motif. Table $1 \& 2$ gives the hydrogen bonding geometry and selected bond lengths, bond angles respectively Figures $1 \& 2$ give the ORTEP diagram and the packing of the molecules in the crystal cell respectively.

Table 1: Hydrogen bond geometry

N_H...O	D-H (\AA)	H...A (\AA)	D---A (\AA)	D-H...A $\left({ }^{\circ}\right)$
N_H2A...O2	0.86	1.97	$2.617(2)$	132

Table 2: Selected Bond lengths (\AA) Selected bond angles (${ }^{\circ}$)

$\mathrm{Cl}(1)-\mathrm{C}(1)$	$1.7435(17)$	$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{O}(2)$	$121.73(14)$
$\mathrm{N}(1)-\mathrm{O}(1)$	$1.2239(18)$	$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(3)$	$118.05(15)$
$\mathrm{N}(1)-\mathrm{O}(2)$	$1.2294(18)$	$\mathrm{O}(2)-\mathrm{N}(1)-\mathrm{C}(3)$	$120.22(13)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1.448(2)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$118.79(14)$
$\mathrm{C}(2)-\mathrm{C}(1)$	$1.355(2)$	$\mathrm{C}(22)-\mathrm{N}(2)-\mathrm{C}(8)$	$121.18(14)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.394(2)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(22)$	$122.68(14)$
$\mathrm{N}(2)-\mathrm{C}(22)$	$1.352(2)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(1)$	$115.51(13)$
$\mathrm{N}(2)-\mathrm{C}(8)$	$1.442(2)$	$\mathrm{C}(22)-\mathrm{C}(3)-\mathrm{N}(1)$	$121.80(14)$
$\mathrm{C}(3)-\mathrm{C}(22)$	$1.417(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$122.05(15)$
$\mathrm{C}(6)-\mathrm{C}(5)$	$1.372(2)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(22)$	$119.20(13)$
$\mathrm{C}(6)-\mathrm{C}(1)$	$1.393(2)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	$119.72(14)$
$\mathrm{C}(5)-\mathrm{C}(22)$	$1.435(2)$	$\mathrm{C}(22)-\mathrm{C}(5)-\mathrm{C}(10)$	$121.08(14)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.543(2)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$120.69(15)$
$\mathrm{C}(10)-\mathrm{C}(9)$	$1.532(2)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Cl}(1)$	$119.65(13)$
$\mathrm{C}(10)-\mathrm{C}(12)$	$1.536(2)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Cl}(1)$	$119.65(13)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.537(2)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(12)$	$108.76(15)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.508(2)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$113.01(15)$
$\mathrm{C}(8)-\mathrm{C}(14)$	$1.523(2)$	$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{C}(11)$	$108.59(16)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.508(3)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	$106.74(12)$
$\mathrm{C}(14)-\mathrm{C}(23)$	$1.538(3)$	$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{C}(5)$	$110.35(14)$

Fig 1: ORTEP diagram of the molecule drawn at 30% probablility along with $S(6)$ motif

Fig 2. Crystal Packing viewed down ab-plane

Results

The crystal structure of a novel quinoline was studied using single crystal X-ray diffraction method is reported The crystal structure is stabilized by C---H...O and Vander waals interactions.

Acknowledgement

Dr.K.A would like to thank the management of Dayanand Sagar University for their support and encouragement.

References:

1. Qizilbash N, Whitehead A, Higgins J, et al. (1998). Journal of the American Medical Association 280(20): 1777-82
2. Szymański P, Lázničková A, Lázniček M, Bajda M, Malawska B, Markowicz M, Mikiciuk-Olasik E., (2013) Int J Mol Sci. - Vol.13(8), 2012.
3. Vimal Patel, Pranav Trivedi., Hardik Gohel., Disha Khetani, IJAPBC Vol. 3(4), Oct - Dec, 2014.
4. \quad Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., RodriguezMonge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
6. Cremer,D. \& Pople,J.A.(1975).J.Am.Chem.Soc.97,1354-1358.
