

International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.9, No.05 pp 395-400, 2016

Synthesis and Characterization of Reduced Graphene Oxide/Ag₂S nanocomposites by co-precipitation Method using Thiourea as Sulfur source and reducing agent

S. Baskar^{1,2}, T. Lavanya³, K. Subramani⁴, Kaveri Satheesh⁵*

 ¹Research and Development, Bharathiyar University, Coimbatore, India - 641 046
²Department of Chemistry, Dhanalakshmi College of Engineering, Tambaram, Chennai, India - 01301
³Department of Physics, IIT Madras, Chennai, India – 600 036
⁴Islamiah College, Vaniyambadi, Tamilnadu, India – 635752
⁵Research and Development, Department of Physics, Dhanalakshmi College of Engineering, Tambaram, Chennai, India - 601 301

Abstract : Graphene based nanocomposites are emerging as a new class of materials for many applications. Reduced graphene oxide/Ag₂S composites were synthesized through a simple coprecipitation method. The composite materials were characterized by X- ray diffractometer (XRD), Fourier transform infrared (FTIR), Ultraviolet – Visible (UV-Vis) and Raman spectroscopy measurements. The chemical state and its Binding Energy investigations of the rGO/Ag₂S were carried out by X-ray photoelectron spectroscopy (XPS). The surface morphology of the composite material was studied by Field emission- Scanning electron Microscope (FE-SEM) and Transmission electron Microscope (TEM) shows that the Ag₂S nanoparticles are heavily deposited on the surface of the reduced graphene Oxide layers. **Keywords** : Reduced graphene oxide, Silver sulfide, Thiourea, Nanocomposite, and Coprecipitation.

Kaveri Satheesh et al /International Journal of ChemTech Research, 2016,9(5),pp 395-400.
