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Abstract : A mathematical modelling of multi-layered human skin and subcutaneous tissues
(SST) is discussed. The proposed model is based on singular nonlinear boundary value problem
(BVP) and also predicts the solution of heat conduction for the temperature distribution in
human forehead. To the best of our knowledge until there is no rigorous Legendre
computational method has been addressed for the model. The obtained numerical results are
compared with finite difference method (FDM). The numerical results were investigated similar
to clinical and computational studies.
Keywords:  Mathematical modelling; boundary value problem; Legendre computational
method.

1. Introduction

The skin in the human body plays a vital role by regulating the exchange of thermal energy with the
environment. Several layers of the skin are responsible for maintaining the necessary functional and tissue
responses. The human thermoregulatory system gets primarily disturbed due to unstable surrounding
environment temperature. This can cause hyperthermia or hypothermia in the body core, and tissue necrosis to
the body peripherals. Richardson and Whitelaw [1] predicted the temperature profiles in the biological tissues
by keeping skin surface as functions of temperature. The temperature distribution has been analysed by Flesch
[2] assuming a heat generation rate has been estimated as an explicit function of the radial distance and an
implicit function of the environment temperature in the heat equation (1). By using variational finite element
method with respect to various environmental temperatures, Khanday and Saxena [3-5] calculated the mass and
temperature distribution at multi-layered skin and sub-dermal tissues. Also, the thermostat phenomenon of brain
tissue  and  estimated  the  cold  stress  at  multi-layered  human  head  with  respect  to  ambient  temperatures  was
studied.

In  recent  years,  theoretical  analysis  of  the  distribution  of  temperature  on  the  skin  surface  for  various
parts of the body has been attracted by the scientists and engineers. It is represented as a boundary value
problem. The differential equation of heat conduction is given in Eq. (1). The boundary conditions are
represented in Eq. (2).
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and

                                        (2)

In recent years, mathematical modelling for the estimation of temperature distribution in human body
has been a widely studied research area. This paper proposes to introduce the Legendre Computation Method
(LCM) [6] for obtaining the numerical solution of the singular boundary value problem that determines the heat
conduction at dermal layers. The current work attempts to study the distribution of temperature at deep dermal
layers for heterogeneous thermal conductivity as a function of temperature. The focus of this paper is to
compare the results obtained using the finite difference method and Legendre computational method.

Hariharan [7] introduced an efficient Legendre wavelet based approximation method for a few-Newell
and Allen-Cahn equations. Hariharan and Kannan [8] reviewed the wavelet solutions for the solutions of
reaction-diffusion equations (RDEs) arising in science and engineering. Excellent references are in [9-11].

The organisation of the paper is as follows: Firstly, the mathematical formulation of the model is
discussed. Then, a few properties of Legendre computational method are briefly explained. Thereafter, the
equation is solved using the LCM and the simulation results are plotted considering four limiting cases. Finally,
concluding remarks are presented.

2. Mathematical formulation of the model:

The temperature distribution in various parts of the human body has been a widely researched domain
in the past. Initially, Pennes [12] considered the heat transfer in biological systems. The following equation
represents the mathematical model of heat transfer in human dermal regions. It is the differential equation of
heat conduction.

ρc  = k(T) ▽2 T + k’(T)▽.T + Q (3)

The above equation is modified to the one given below in case of steady state processes,

                     (4)

Now, the value of Q in the equation (4) is given as

Q = q(37-T) (5)

Replacing (5) in (4), the equation is now written as

...... (6)

with the boundary conditions given by,
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,     T(R) = Tp (7)

As the skin surface is uneven, the equation (6) is converted into a non- dimensional equation using the
following transformations,

Y = T – Tp and t =

where, 0 < t < 1.

The boundary value problem thus obtained as in equation (8) is solved using LCM, with the value of n is
considered as zero. For solving the equation with FDM, it was considered to be 0.33 [10]. The solution of
singular nonlinear boundary value problems with FDM have been detailed in [13-15].

...... (8)

with the boundary conditions as:

, Y(1) = 0

Simplifying equation (8), by substituting n=0,

...... (9)

3. Some properties of the shifted Legendre polynomials

The properties of the well known Legendre polynomials Pn(z),  defined on the interval [-1,1], are the
following [16]:

Pn(z)  =  (-1)n Pn(z),   Pn(-1) =  (-1)n,   Pn(1)  = 1                                                                     (10)

It is of common knowledge that the weight function is ω (z) =1 and the weighted space )1,1(2 -wL is equipped
with the following inner product and norm;
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The set of Legendre polynomials forms a complete orthogonal system )1,1(2 -L and;
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is obtained. In order to use these polynomials on the interval [0, L] the so-called shifted Legendre polynomials

are defined by introducing the change of variable z = .12 -
L
x

The shifted Legendre polynomials are defined as;
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The analytic form of the shifted Legendre polynomial )(* xPn of degree n is given by;
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Assume ,1)( =xLw  and the weighted space ),0(2 LL
Lw

be defined with the following inner product and norm;
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The set of the shifted Legendre polynomials forms a complete ),0(2 LL
Lw orthogonal system and
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 is obtained. The function u(x) which is square integrable in [0,L], may be written

in terms of shifted Legendre polynomials as;
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where the coefficients ic are represented as;
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For m=2, we can obtain the following operational matrices.

D = D’ =

The method which was suggested is applied when m=2, a system of 3 linear algebraic equations follows, out of
this 2 from the initial conditions and one from the main equation using the collocation point x0=0.5 which is the
root of 0)(*

1
=xP  which can be written in the matrix form:

,)()( AxPxU =

where ( ) ( ) ( )[ ] [ ]166121)( 2*

2

*

1

*

0
+--== xxxxPxPxPxP ,

[ ]TCCCA
210

=

With the help of operational matrices, the given Eq.(9) together with the boundary conditions, we get the 3
algebraic equations and solve them by using Newton’s method.

3.1 Fundamental relations

It is proposed the solution [ ]LCxu m ,0)( Î can be estimated in terms of the first (m+1) terms of shifted
Legendre polynomials given by
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4. Method of solution by the LCM

The value of various parameters, useful for computing the solution, for the forehead region is taken as: q =
0.000002 ; Tp = 33.03 + 0.14(Ts – 10); k0 = 0.00009Tp (37-Tp)-1/3.

The value of Ts = 0°C, 10°C, 20°C, 25°C. Hence, each value of Ts is substituted in the equation of Tp and the
solution is found. The matrices D and D’ replace the first order and second order differential terms respectively
in Eq. (9).

4.1 Limiting cases

Case 1: Consider Ts=0°C

The graph is obtained for the value of Ts=0°C. A comparison of results obtained by the FDM and LCM
method is shown in Fig. 1. Experimental values from [17, 18] can be correlated to the ones obtained
numerically.

Case 2: Then consider Ts=10°C

The graph is obtained for the value of Ts=10°C.  A  comparison  of  results  obtained  by  the  FDM  and
LCM method is shown in Fig. 2.

Case 3: Let us consider Ts=20°C

The graph is obtained for the value of Ts=20°C. A comparison of results obtained by the FDM and
LCM method is shown in Fig. 3.

Case 4: Now we consider Ts = 25°C

The following graph is obtained for the value of Ts=25°C. A comparison of results obtained by the
FDM and LCM method is shown in Fig. 4.

Fig.1 Comparison between FDM and LCM for            Fig.2 Comparison between FDM and LCM for
Ts=0°C                                                                                Ts=10°C
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Fig.3 Comparison between FDM and LCM                     Fig.4 Comparison between FDM and LCM  for
for Ts=20°C                                                                          Ts=25°C

The values plotted in the graphs above correlate with the experimental values. At an ambient
temperature of around 25°C, the temperature of forehead was found to be around 35.2°C experimentally [18,
19].

5. Results and Discussion

In this paper, the Legendre computational matrix method is introduced to obtain the numerical solution
singular nonlinear BVPs by governing the forehead region of the human body. The results are compared
graphically with the results obtained by solving the equations with finite difference method. The various
parameters are required for finding the solutions of the problem were adapted from [5, 20]. This study reflects
an innovation in the technique that can be used to solve the singular nonlinear BVP pertaining to the estimation
of thermoregulation in the dermal layers of the human body. The study in both FDM and LCM approach
indicates that the thermal conductivity gradually decreases from the core to the outer regions as the temperature
increases. This fact is immensely helpful for investigating the temperature variations of the human body
especially during clinical or surgical situations.
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Nomenclature:

Ts Surrounding atmosphere temperature
Tp Peripheral temperature
R Radius of human head
rd Radial temperature
c Specific heat of tissue
ρ Density of tissue
k Thermal Conductivity
k0 Initial thermal conductivity
E Evaporation term
Q Heat production per unit volume
q Positive constant
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