

ChemTech

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.9, No.03 pp 500-505, 2016

Crystal structure analysis of 4-(3-(5-bromo-1H-indol-3-yl)-2oxoindolin-3-yl)-3-phenylisoxazol-5(2H)-one

K. Elumalai¹, Nataraj Poomathi², P. T. Perumal², K. Sakthi Murugesan¹*

¹Department of Physics, Presidency College (Autonomous), Chennai-600 005, India

²Organic Chemistry Division, CSIR Central Leather Research Institute, Adyar, Chennai-600 020, India

Abstract: The crystal structure of 4-(3-(5-bromo-1H-indol-3-yl)-2-oxoindolin-3-yl)-3phenylisoxazol-5(2H)-one ($C_{27}H_{22}BrN_3O_4S$). The compound crystallizes in Orthorhombic Pbca space group with unit cell parameters at 296(2) K as follows: a = 14.158(3) Å, b = 14.747(3 8) Å, c = 23.048(7) Å, $\alpha = \beta = \gamma = 90^{\circ}$. Crystal data were collected using BRUKER SMART APEX II CCD X-ray diffractometer. The structure was solved by direct methods and refined on F² by full-matrix least-squares procedures to the final R₁ of 0.089 using SHELXL programs.

Key Words: oxoindoline, isoxazole and crystal structure.

Introduction

Indole containing compounds are best known for their medicinal properties in the pharmaceutical industry. In modern times, analogs based on indole are significant players in a diverse array of markets such as dyes, plastics, agriculture, vitamin supplements, over-the-counterdrugs, flavour enhancers and perfumery¹. Several indole derivatives, such as sunitinib as tyrosine kinase inhibitor² or delavirdine as nonnucleoside reverse transcriptase inhibitor³, are in clinical use. spiroindole are important heterocyclic compounds with diverse bioactivities^{4,5}.

Experimental

X-ray Structure Determination

Single crystal of the compound suitable for x-ray diffraction was obtained by slow evaporation method. Three dimensional intensity data were collected on a Bruker⁶ SMART APEX CCD Diffractometer using graphite monochromatized Mo-K α radiation (λ = 0.71073 Å) at Department of chemistry, IIT, Chennai, India. The structure was solved by direct methods and refined on F² by full-matrix least-squares procedures using the SHELXL programs⁷. All the non-hydrogen atoms were refined using isotropic and later anisotropic thermal parameters. The hydrogen atoms were included in the structure factor calculation at idealized positions by using a riding model, but not refined. Images were created with ORTEP-3⁸. The crystallographic data for the compound are listed in Table 1.

Compound	Parameters		
Empirical formula	C ₂₇ H ₂₂ BrN ₃ O ₄ S		
Formula weight	1128.89		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system, space group	Orthorhombic, Pbca		
Unit cell dimensions	a = 14.158(3) Å alpha = 90 deg.		
	b = 14.747(3) Å beta = 90 deg.		
	c = 23.048(7) Å gamma = 90 deg.		
Volume	4812(2) Å ³		
Z, Calculated density	4, 1.558 Mg/m ³		
Absorption coefficient	1.836 mm ⁻¹		
F(000)	2304		
Crystal size	0.25 x 0.16 x 0.10 mm		
Theta range for data collection	1.77 to 20.90 deg.		
Limiting indices	-11<=h<=14, -14<=k<=14, -23<=l<=18		
Reflections collected / unique	6282 / 2518 [R(int) = 0.0561]		
Completeness to theta $= 20.90$	98.70%		
Max. and min. transmission	0.8377 and 0.6568		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2518 / 0 / 327		
Goodness-of-fit on F ²	1.091		
Final R indices [I>2sigma(I)]	R1 = 0.0898 , wR2 = 0.2749		
R indices (all data)	R1 = 0.1132, $wR2 = 0.2926$		
Largest diff. peak and hole	0.966 and -0.877 e.A ⁻³		

Table 1: Crystal data and structure refinement of the titled compound

Synthesis of the compound

A mixture of 3-(5-bromo-1*H*-indol-3-*yl*)-3-hydroxyindolin-2-one (1 mmol), isoxazolone (1 mmole) and *p*-TSA.H₂O (0.20 mmol) in ethanol (3 mL) was stirred at room temperature for 2 h. The crude compound was purified by column chromatography (5:95 % MeOH/CHCl₃) to obtain pure product in good yield (87 %). The purified compound was recrystalised from ethanol and DMSO-D₆ by using slow evaporation method. The scheme diagram is given below.

Results and Discussion

The symmetric unit of the title compound is shown in Fig. 1. The pyrrole ring (N1/C5-C8) is twisted conformation with puckering parameters⁹, Q = 0.098 Å and $\phi = 50(7)^{\circ}$. The isoxazole rings O2 and O3 atoms are deviating from the mean plane of (N3-C17-C18-C19) and (N3-O2-C17-C18-C19) by 0.085Å and -0.068Å, respectively. The isoxazole ring is almost orthogonal to the phenyl ring and two indole rings, making a dihedral angle of 34.8(7)°, 3.0(6)° and 74.5(6)°, respectively. The indole ring Br atom are deviating from the mean plane of (N2/C9-C16) -0.093Å.

In the crystal, molecules are linked via N---H...O hydrogen bonds, forms chains along c-axis(Fig 2 & Table 2). The crystal packing is further stabilized by C---H... π and π --- π intermolecular interactions. The selected bond lengths and angles are listed in table 3 and 4, respectively.

Distance (Å)				Angle (°)
D—HA	D—H	HA	DA	D—H…A
N1H1O4 ⁱ	0.86	2.09	2.876(15)	151
N2H2O1 ⁱⁱ	0.86	2.14	2.949(13)	157
N3H3O1 ⁱⁱⁱ	0.86	2.16	2.841(14)	136
Symmetry and i) 1 y	11.00	(3) 2 + 1/2 + 1/2	1/2 -	(1/2) + 1/2 = 1/2 = 1/2

Table 2: Hydrogen-bond geometry [Å]

Symmetry code: i) 1+x,-1+y,z,

iii) -1/2+x,y,1/2-z

Fig.1. The molecular structure of the title compound, with the atom-numbering scheme. The displacement ellipsoids are drawn at 30% probability level. H atoms are shown as spheres of arbitrary radius.

Fig.2. The crystal packing of the title compound, viewed along c axis, showing N---H...O hydrogen bonds. The hydrogen bonds are shown as dashed lines (see Table 2 for details).

Bond	Length (Å)
N(1)-C(7)	1.369(17)
N(1)-C(8)	1.377(16)
N(1)-H(1)	0.86
N(2)-C(10)	1.351(16)
N(2)-C(11)	1.371(16)
N(2)-H(2)	0.86
N(3)-C(18)	1.348(15)
N(3)-O(2)	1.396(14)
N(3)-H(3)	0.86
O(1)-C(7)	1.206(15)
O(2)-C(19)	1.380(15)
O(3)-C(19)	1.191(15)
Br(1)-C(14)	1.934(12)
C(1)-C(8)	1.366(18)
C(1)-C(2)	1.42(2)
C(1)-H(1A)	0.93
C(2)-C(3)	1.352(19)
C(2)-H(2A)	0.93
C(3)-C(4)	1.398(18)
C(3)-H(3A)	0.93
C(4)-C(5)	1.358(17)
C(4)-H(4)	0.93
C(5)-C(8)	1.386(17)
C(5)-C(6)	1.518(16)
C(6)-C(17)	1.506(16)
C(6)-C(9)	1.526(16)
C(6)-C(7)	1.572(17)
C(9)-C(10)	1.369(17)
C(9)-C(16)	1.441(17)
C(10)-H(10)	0.93

Bond	Angle (°)
C(7)-N(1)-C(8)	113.9(11)
C(7)-N(1)-H(1)	123.1
C(8)-N(1)-H(1)	123.1
C(10)-N(2)-C(11)	109.7(10)
C(10)-N(2)-H(2)	125.2
C(11)-N(2)-H(2)	125.2
C(18)-N(3)-O(2)	109.2(10)
C(18)-N(3)-H(3)	125.4
O(2)-N(3)-H(3)	125.4
C(19)-O(2)-N(3)	107.2(9)
C(8)-C(1)-C(2)	116.2(13)
C(8)-C(1)-H(1A)	121.9
C(2)-C(1)-H(1A)	121.9
C(3)-C(2)-C(1)	120.9(12)
C(3)-C(2)-H(2A)	119.6
C(1)-C(2)-H(2A)	119.6
C(2)-C(3)-C(4)	121.2(13)
C(2)-C(3)-H(3A)	119.4
C(4)-C(3)-H(3A)	119.4
C(5)-C(4)-C(3)	118.7(13)
C(5)-C(4)-H(4)	120.6
C(3)-C(4)-H(4)	120.6
C(4)-C(5)-C(8)	119.9(11)
C(4)-C(5)-C(6)	132.2(11)
C(8)-C(5)-C(6)	107.8(10)
C(17)-C(6)-C(5)	115.2(9)
C(17)-C(6)-C(9)	111.4(9)
C(5)-C(6)-C(9)	111.2(8)
C(17)-C(6)-C(7)	109.8(9)
C(5)-C(6)-C(7)	102.6(9)

Conclusion

The crystal structure analysis of a novel oxoindoline and isoxazole compound was studied using x-ray diffraction method. In the crystal, molecules are linked via N---H...O hydrogen bonds, forms chains. The crystal packing is further stabilized by C---H... π and π --- π intermolecular interactions.

Supplementary Material

Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no.CCDC-1020838. Copies of available material can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-1223-336033 or e-mail:deposit@ccdc.cam.ac.uk).

Table 4: Selected Bond angles (°)

Acknowledgments

The authors thank the Department of chemistry, IIT, Chennai, India, for X-ray intensity data collection.

References

- 1. Barden, T. C. (2011). Top Heterocycl. Chem. 26, 31--46.
- 2. Oudard, S., Beuselinck, B., Decoene, J. & Albers, P. (2011). Cancer Treat. Rev. 37, 178-184.
- 3. Beale, J. M. (2011). Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 12th ed., edited by J. M. Beale & J. H. Block, pp. 342--352. Philadelphia: Lippincott Williams and Wilkins.
- 4. Aanandhi, M. V., Vaidhyalingam, V. & George, S. (2008). Asian J. Chem. 20, 4588--4594.
- 5. Muthukumar, V. A., George, S. & Vaidhyalingam, V.(2008).Biol. Pharm. Bull.31, 1461--1464.
- 6. Bruker (2008), APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, US.
- 7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- 8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849--854.
- 9. Cremer, D. & Pople, J. A. (1975).J. Am. Chem. Soc.97, 1354–1358.
