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Abstract: Chaos theory has a manifold variety of applications in science and engineering. There are many systems
in nature with several stable states, which are separated by energy barriers. When the system can move along the
stable states, its dynamics can become quite complex. A simple mechanical model that depicts some of these
complex dynamical features is the famous Duffing double-well oscillator (1918). This paper gives a summary
description of the Duffing double-well chaotic oscillator. Next, new control results are obtained for the global chaos
anti-synchronization of the identical Duffing double-well chaotic oscillators via integral sliding mode control
(ISMC). MATLAB plots have been shown to illustrate the phase portraits of the Duffing double-well chaotic
oscillator and the global chaos anti-synchronization of Duffing double-well chaotic oscillators via integral sliding
mode control.
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1. Introduction

A dynamical system is called chaotic if it satisfies the three properties: boundedness, infinite recurrence and
sensitive dependence on initial conditions [1-4].

Chaos theory has a lot of applications in science and engineering [5]. Chaos theory has applications in
dynamo systems [6-12], memristors [13-16], nonlinear oscillators [17-30], Tokamak systems [31-32], finance
system [33], cellular neural networks [34-39], chemical reactors [40-50], neurology [51-58], population biology
systems [59-67], etc.

A simple mechanical model that depicts some of these complex dynamical features is the famous Duffing
double-well oscillator ([68], 1918). This paper gives a summary description of the Duffing double-well chaotic
oscillator. Next, new results are obtained for the global chaos synchronization of the identical Duffing double-well
chaotic oscillators via integral sliding mode control (ISMC). Sliding mode control is a popular control technique
used in the control and synchronization of chaotic systems [69-73]. MATLAB plots have been shown to illustrate
the phase portraits of the Duffing double-well chaotic oscillator and the global chaos synchronization of Duffing
double-well chaotic oscillators via integral sliding mode control.

2. Duffing double-well chaotic oscillator

Duffing double-well chaotic oscillator [68] is described by the 2-D dynamics
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The system (1) is chaotic when the system parameters are chosen as
0.7,  0.5,  1F a w= = = (2)

For numerical simulations, we take the initial conditions
(0) 0.5,  (0) 0.5x y= = - (3)

The 2-D phase portrait of the Duffing double-well chaotic oscillator (1) is depicted in Figure 1.

Figure 1. The 2-D phase portrait of the Duffing double-well chaotic oscillator

3. Anti-synchronization of the identical Duffing double-well chaotic oscillators

In this section, we use integral sliding mode control (ISMC) to achieve global chaos anti-synchronization of
the identical novel Duffing double-well chaotic oscillators. We use Lyapunov stability theory to prove the main
result derived in this section for the global chaos synchronization of the Duffing double-well chaotic oscillators.

As the master system, we consider the Duffing double-well chaotic oscillator given by

1 1
3

1 1 1 1 cos( )

x y
y x x ay F tw
=ì

í
= - - +î

&

&
(4)

where 1 1,x y are the states and , ,a F w are constant positive parameters.
As the slave system, we consider the Duffing double-well chaotic oscillator given by
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where 2 2,x y are the states and ,x yu u are integral sliding mode controls to be determined.

The anti-synchronization error between the systems (4) and (5) is defined by
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The error dynamics is obtained as
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Based on the sliding mode control theory [74], the integral sliding surface of each error variable is defined as
follows:
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The derivative of each equation in (8) yields
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The Hurwitz condition is satisfied if xl and yl are positive constants.

Based on the exponential reaching law [74], we set

sgn( )
sgn( )

x x x x x

y y y y y

s s k s
s s k s

h
h

= - -ìï
í = - -ïî

&

&
(10)

Comparing equations (9) and (10), we get
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Using Eq. (7), we can rewrite Eq. (11) as follows:
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From Eq. (12), the control laws are obtained as follows:
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Theorem 1. The Duffing double-well chaotic oscillators (4) and (5) are globally and asymptotically
anti-synchronized for all initial conditions by the integral sliding mode controller (13), where the constants

, ,x yl l , ,x yh h ,x yk k are all positive.

Proof. This result is proved using Lyapunov stability theory [75].
We consider the following quadratic Lyapunov function

( )2 21( , )
2x y x yV s s s s= + (14)

where ,x ys s are as defined in (8).

The time-derivative of V is obtained as

x x y yV s s s s= +& & & (15)

Substituting from Eq. (10) into (15), we get

[ sgn( ) ] [ sgn( ) ]x x x x x y y y y yV s s k s s s k sh h= - - + - -& (16)

Simplifying Eq. (16), we obtain
2 2

x x x x y y y yV s k s s k sh h= - - - -& (17)
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Since , 0x yk k > and , 0,x yh h > it follows from (17) that V& is a negative definite function.

Thus, by Lyapunov stability theory [75], it follows that ( , ) (0,0)x ys s ® as .t ®¥

Hence, it is immediate that ( , ) (0,0)x ye e ® as .t ®¥  This completes the proof. n

4. Numerical Simulations
 We use classical fourth-order Runge-Kutta method in MATLAB with step-size 810h -=  for solving the

system of differential equations (4) and (5), when the integral sliding mode controller (13) is implemented.
The parameter values of the Duffing double-well oscillators are taken as in the chaotic case, viz.

0.5,  1,  0.7a Fw= = = (18)

We take the sliding constants as

0.1, 0.1, 30x y x y x yk kl l h h= = = = = = (19)

We take the initial conditions of the Duffing double-well chaotic oscillator (4) as

1 1(0) 3.7,  (0) 12.8x y= = (20)

We take the initial conditions of the Duffing double-well chaotic oscillator (5) as

2 2(0) 4.1,  (0) 16.4x y= = (21)

Figures 2-3 show the anti-synchronization of the Duffing double-well chaotic oscillators (4) and (5).

Figure 4 shows the time-history of the anti-synchronization errors , .x ye e

Figure 2. Anti-synchronization of the states 1x and 2x



Sundarapandian Vaidyanathan /Int.J. ChemTech Res. 2016,9(2),pp 297-304. 301

Figure 3. Anti-synchronization of the states 1y and 2y

Figure 4. Time-history of the anti-synchronization errors ,x ye e

5. Conclusions

In this paper, we first gave a summary description of the Duffing double-well chaotic oscillator. Next, new results
were obtained for the global chaos anti-synchronization of the identical Duffing double-well chaotic oscillators via
integral sliding mode control (ISMC). MATLAB plots were shown to illustrate all the main results derived in this
research work for the Duffing double-well chaotic oscillator.
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