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Abstract : Pollutants removal from human’s daily activities is one of the most widely known 

environmental applications of activated carbons. In order to guarantee the successful removal 
of contaminants and pollutants on activated carbons, the development of new adsorbents has 

been increasing in the last few years. In this work the effects of different chemical-physical 

parameters and the elemental composition of precursors for the modeling of specific surface 
area development in activated carbons synthetized by physical activation is investigated. Three 

types of data were used in this study, a first data with 24 precursors a second consisting of 24 

carbons and a third joining the previous data I and II. The obtained Quantitative Specific 
Surface Area (QSSA) prediction models give adequate and interpretable results with 

determination coefficient values in all cases above 80% for the training set. It was also 

demonstrated that the most of the precursors studied here are feasible alternatives for activated 

carbons preparation adequate for pollutants removal. The surface area development of the 
synthetized activated carbons can be successfully described through a multiple linear regression 

model and a structural interpretation of the factor affecting the Specific Surface Area is 

showed. This type of models could be useful for the prediction of the adsorption capacity of 
new materials based on the parameter of the chemical compositions to efficient removal of 

pollutants in purification process. 

Keywords : Activated Carbons, Adsorption and Adsorbents, Physicochemical Parameters, 

Multiple Linear Regression, QSSAR. 
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1.Introduction 

Adsorption is a widely used purification process as an effective physical method of separation in order 

to elimination or lowering the concentration of wide range of dissolved pollutants (organics, inorganics) in an 

effluent. It is big news that activated carbons are a well-known adsorbent that can be used efficiently for 

removal of a broad spectrum of pollutants from air, soil and liquids.
1, 2, 3

 

Activated carbons can be obtained from different precursors, with probed benefits to the environment. 

Due to its chemical composition, forestall biomasses are valuable sources in the synthesis of adsorbents 
materials. Various examples of activated carbons preparation can be found in the open literature. They have 

been used among others in the purification of pollutants gases such as carbon dioxide, sulfur dioxide, hydrogen 

sulfide, nitrogen oxides, mercury and other harmful heavy metals, etc.
4, 5, 6

 

Besides, to develop adsorbent with desired adsorbent properties, it is necessary to know the chemical, 

morphological and textural features of the starting materials. Furthermore, the determination of the optimal 

conditions for activated carbons synthesis usually involves several experiments. For practical and less time-
consuming during adsorbents preparation, design and control, it is important to minimize the lab tests and 

optimize the influence of the experimental conditions and the raw materials composition on the adsorptive 

properties of the final materials.
7, 8

 

The adequation of theoretical models to the available experimental information will be helpful in order 

to rationalize time and experiments.
9, 10, 11

 However due to the complexity of the correlation between input and 
output variables on the adsorbent properties, it is difficult to be studied using traditional mathematical 

modeling.
12, 13, 14

Multiple linear regression models based on genetic algorithms processing, can be successfully 

applied in many areas of sciences because of their multiple linearity, simplicity, reliability and robustness in 

modeling those complex systems.
10, 15

 

Therefore, the objectives of the present investigation were: (1) use multiple linear regression models to 

predict the adsorptive characteristics of activated carbons; (2) select the initial precursor composition as the 
independent variable, whereas the specific surface area of the synthetized materials will be considered as the 

output variable for the developed networks; (3) incorporate the resulting structure-property relationship into the 

model to predict the adsorptive characteristics of the activated carbons studied. 

2 Material and Methods 

The raw materials selected for the study are presented in Table 1. 

Table 1.Common and scientific names of the precursors studied. 

Common Name Scientific Name 

 

Common Name Scientific Name 

Woods: Seeds: 

White Algarroba Prosopis Alba Olives Stones OleaEuropaea 

Spanish Lime MelicoccusBijugatus Guava PsidiumGuajava 

Sickle Bush Dichrostachyscinerea MameyZapote Mammea Americana 

Brasiletto CaesalpiniaBahamensis 

Seed shells: South American 

Mahogany 
Jacaranda Semiserrata 

Casuarina or River Oak CasuarinaCunninghamiana American Mahogany KhayaSpp 

Cedar CedrelaBalansae Honduran Mahogany SwieteniaMacrophylla 

Eucalyptus Eucalyptus Robusta Coconut CocosNucifera 

Marabou Stork LeptoptilusCrumeniferus 
Agro-industrial wastes: 

Bronco Lumber MalpighiaFucata 

Holy Wood BulnesiaSarmientoi Sugar Cane Bagasse SaccharumOfficinarum 

Pine Araucaria Angustifolia Tropical Bamboo BambusoideaeBambuseae 

Red Quebracho/Iron 

Tree 
SchinosisBalansae Sugar Cane Straw SaccharumOfficinarum 

Teak TectonaGrandis Common Corncobs Zea Mays 
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2.1. Preparation of activated carbons 

The starting raw materials were cut up in small pieces and then subjected to pyrolysis. This process was 
carried out in a tubular reactor in nitrogen atmosphere. The samples were heated at the rate of 10°C/min from 

room temperature to the final pyrolysis temperature of 500°C. In the final pyrolysis temperature, samples were 

kept for 60 minutes and then cooled down. The solid products of pyrolysis were then physically activated. The 
experimental conditions used here were: activation time of 60min, activating agent: H2O. The heating speed 

from room temperature to the final activation temperature of 800°C was 10°C/min.
16, 17

 

2.2. Characterization of the raw materials and synthetized activated carbons  

2.2.1. Elemental analysis 

The amount of elements (carbon, hydrogen, nitrogen and oxygen) in the raw materials was determined 

by an Elemental Analyzer that uses flash combustion to completely digest the samples. The analizedsamples 
were dried, before the measurement was carried out, in a stove at 110°C. The materials was flash burned at the 

temperature of 1000°C in flowing oxygen (99.99% purity) for the later C, H and N analysis. The CO2, H2O and 

NOxcombustion gases were passed through a reduction tube with helium as the carrier gas to convert the 
NOxnitrogen oxides into N2 and bind the free oxygen. The CO2 and H2O were measured by selective IR 

detector. After corresponding absorption of these gases, the content of the remaining nitrogen was determined 

by thermal conductivity detection. The oxygen was calculated by the difference of carbon, hydrogen and 

nitrogen. 

2.2.2. Apparent Density Measurement 

Apparent Density is a measure of the mass per unit volume of a material. It is also called Bulk Density 
and provides a measure of the “fulffiness” of a material in its natural form. In this work the Standard ASTM 

D1895 was used. According to this standard the materials are poured into a cylinder of known volume (e.g. 100 

mL measuring cilinder) and later weight. Apparent density was calculated as the mass of material divided by 

the volume occupied into the cylinder. 
17

 

2.2.3. Specific Surface Area Measurement 

In order to examine the structure of the synthetized materials, the measurement of the specific surface 
area was carried out by gas adsorption isotherms using a Sorptometerand applying BET Theoretical Model. All 

samples were degassed at 200°C prior to N2 adsorption measurements. Specific surface area was determined by 

a multipoint BET method using the adsorption data in the relative pressure range: 0.05-0.3.
18

 

2.2.4. Mechanical Resistance Measurement 

The mechanical resistance of the obtained activated carbons was measured through a simple method. A 
know mass of the granular material was impacted by six glass balls into a semispherical container of stainless 

steel. The percentage relation between the fragmented mass retained in a 0.5mm mesh and the initial mass is 

used to estimate the mechanical resistance. 
17

 

2.3 Construction of QSSAR models 

The adsorption capability was predicted by using a multiple linear regression model. In this case, 

several QSSAR models were obtained using the different physicochemical parameters and composition of 
precursors and carbons as independent variables of the model. The quality of the models was established with 

the most commonly regression’s statistical parameters used and a cross-validation analysis of the performance 

of the prediction equation.
19, 20, 21

 

In this case the Multiple Linear Regression (MLR) was the technique chosen and was performed with 
software packageSTATISTICA.

22
The considered tolerance parameter was the default value for minimum 

acceptable tolerance, which was 0.01.  The strategy for variable selection was the forward stepwise method. 

Besides the principle of maximal parsimony (Occam's razor) was used at time to model selection variables. 

Therefore, the model with the higheststatistical signification, but having as few features as possible, was 

selected. The dependent variable was specific surface area (S) where the values are reported in m
2
/g. 

The validation of the models is another of the main aspects in good QSAR methodologies concerningto 

the diagnostic of the developedmodels. Therefore, a reliable QSAR model should have suitable measures of 
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goodness-of-fit and robustness. In the case of the training set, the good-of-fit is proven by the prediction of the 

cases for the model given by the measure of the response variance for the training set.  

For this study the quality of the models was determined by using some statistical regression parameters 
such as: the correlation coefficient (R), Fisher ratio’s p-level and the standard error in calculation for training 

set. In the cross-validation procedure, the stability of the predictor coefficients of the models when occurs the 

removal of one or more cases in the TS was also checked. Thisinternal leave-one-out validation method 

(Q
2

LOO)proves the validity of the prediction models obtained by the MLR.
23

 

3. Results and Discussion 

3.1 Data preparation  

The parameter used as independent and dependent variables for the construction of the QSSAR models 

were collected from our laboratory and were published previously.
24

In the Table 2 are showed the chemical 

composition (percent of carbon, oxygen, nitrogen and hydrogen) and the physicochemical parameters of the 

precursors studied. In other hand for the activated carbons synthetized at 800°C and 60 min with steam water 
thechemical composition and some physicochemical and mechanical properties are depicted in Table 3.  

Table 2.Chemical composition of the precursors and physical properties studied. 

 Chemical Composition Physical Properties 

Sample %C %H %O %N O/C dap(g/cm
3
) dr(g/cm

3
) P(%) 

Woods: 

White Algarroba 52.9 6.5 40.3 0.3 0.76 0.371 0.760 0.44 

Spanish Lime 51.6 5.4 42.0 1.0 0.82 0.467 0.900 0.13 

Sickle Bush 51.3 5.4 42.2 1.1 0.82 0.340 0.565 0.38 

Brasiletto 50.8 5.2 43.2 0.9 0.85 0.395 0.857 0.30 

South American Mahogany 58.3 5.9 35.0 0.8 0.60 0.570 0.850 0.47 

Casuarina or River Oak 48.6 6.1 44.9 0.4 0.62 0.580 0.900 0.32 

Cedar 45.8 6.2 47.4 0.6 1.03 0.230 0.480 0.59 

Eucalyptus 47.2 5.6 46.7 0.5 0.89 0.440 0.800 0.48 

Marabou Stork 51.1 5.4 42.4 1.1 0.83 0.374 0.780 0.46 

Bronco Lumber 47.9 5.0 46.0 1.1 0.96 0.324 0.565 0.33 

Holy Wood 56.5 6.8 36.4 0.3 0.64 0.710 1.150 0.12 

Pine 53.6 5.9 40.4 0.1 0.75 0.409 0.550 0.58 

Red Quebracho/Iron Tree 61.4 6.6 30.7 1.3 0.50 0.853 1.200 0.06 

Teak 55.3 6.5 37.0 1.2 0.47 0.832 1.100 0.27 

Seeds: 

Olives Stones 57.3 6.0 36.1 0.7 0.63 0.764 0.913 0.32 

Guava 56.5 3.0 40.1 0.4 0.71 0.408 1.040 0.62 

MameyZapote 58.5 5.5 35.1 0.9 0.60 0.750 1.080 0.35 

Seed shells: 

South American Mahogany 53.9 5.1 40.0 1.0 0.74 0.382 0.612 0.37 

Honduran Mahogany 54.2 5.1 39.7 1.0 0.73 0.371 0.750 0.50 

Coconut 69.9 5.0 24.5 0.7 0.35 1.308 1.537 0.14 

Agro-industrial wastes:  

Sugar Cane Bagasse 42.6 5.6 50.7 1.1 1.19 0.100 0.700 0.86 

Tropical Bamboo 47.3 8.4 43.9 0.4 0.93 0.350 0.604 0.35 

Sugar Cane Straw 44.5 5.3 49.0 1.2 1.10 0.176 0.350 0.58 

Common Corncobs 42.9 4.9 51.5 0.7 1.20 0.168 0.420 0.79 

dap: Apparent density; dr: Real density; P: Porosity; Rm: Mechanical resistance 
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Table 3.Chemical Composition and some Physicochemical and Mechanical Properties of the activated 

carbons synthetized at 800°C and 60 min with steam water. 

 Chemical Composition Physicochemical and Mechanical Properties 

Sample %C %H %O %N dap(g/cm
3
) 

Rm(%

) 

η 

(%) 

Yp 

(%) 

Yt 

(%) 

S(m
2
/g

) 

Woods: 

White Algarroba 86.4 2.8 10.4 0.4 0.275 85.8 41.8 30.6 24.3 867 

Spanish Lime 86.5 2.1 10.2 1.2 0.566 94.4 52.8 27.0 20.1 991 

Sickle Bush 86.4 2.1 10.3 1.2 0.202 83.1 39.1 31.0 24.7 820 

Brasiletto 86.2 2.0 10.6 1.2 0.394 90.2 46.3 30.0 23.6 918 

South American Mahogany 89.2 2.3 8.0 0.6 0.219 81.0 39.7 26.7 19.8 832 

Casuarina or River Oak 85.3 2.4 11.1 1.2 0.373 90.2 45.5 37.8 32.5 843 

Cedar 84.2 2.4 11.9 1.5 0.157 77.6 35.1 25.9 18.9 909 

Eucalyptus 84.8 2.2 11.7 1.4 0.223 89.0 42.9 36.6 31.2 791 

Marabou Stork 86.3 2.1 10.3 1.3 0.317 86.6 39.9 31.0 26.8 879 

Bronco Lumber 85.1 1.9 11.5 1.5 0.362 89.0 45.1 27.0 20.1 905 

Holy Wood 88.5 2.6 8.4 0.5 0.571 96.6 53.0  42.0 35.3 994 

Pine 87.3 2.3 9.7 0.7 0.108 79.5 35.5 26.6 19.7 796 

Red Quebracho/Iron Tree 90.4 2.5 6.6 0.4 0.634 98.9 55.4 44.5 40.2 1020 

Teak 88.0 2.5 8.6 0.9 0.420 92.7 47.3 39.6 34.6 929 

Seeds: 

Olives Stones 88.8 2.3 8.3 0.6 0.373 89.4 45.5 28.0 21.3 909 

Guava 88.7 1.1 8.8 1.4 0.364 86.6 42.7 43.0 38.5 888 

MameyZapote 91.1 2.5 6.2 0.2 0.329 91.7 47.9 43.0 39.1 940 

Seed shells: 

American Mahogany 86.4 2.3 11.3 0.0 0.257 85.0 39.6 43.0 38.6 847 

Honduran Mahogany 87.5 1.8 9.3 1.4 0.292 86.9 43.0 42.0 37.1 889 

Coconut 93.4 1.5 5.0 0.1 0.572 96.6 53.0 45.0 39.8 990 

Agro-industrial wastes: 

Sugar Cane Bagasse 82.3 2.6 13.1 2.0 0.120 76.9 32.7 22.0 14.4 580 

Tropical Bamboo 85.2 2.9 11.4 0.5 0.294 84.4 42.5 30.0 23.2 875 

Sugar Cane Straw 84.4 2.1 12.4 1.1 0.050 79.5 25.4 20.0 12.1 554 

Common Corncobs 83.3 1.5 12.6 2.6 0.080 71.7 27.3 26.0 17.4 507 

dap: Apparent density; Rm: Mechanical resistance; η:Crystallinity; Yp: Pyrolysis yield; 

Yt: Yield during the whole activation process; S: Specific surface area. 

 
3.2. Development and assessment of QSSAR-MLR models 

In this study, seven models in total were obtained, one for the precursors and the remaining six using 

the activated carbons, all models are shown in Table 4. As can be seen the model for the precursors (model 1 in 

Table 4) explains 86.42% of the experimental variance of the adsorption capacity and a value of Q
2
 (LOO) of 

86.84 the cross-validated determination coefficient from this LOO experiment.  

The remaining six QSSAR model were built for the carbon activated as cases. For these models, several 
combinations were proven, by removing variables, with the aim to improve the performance of the models. The 

first three models for activated carbons, (models 2, 3 and 4 in Table 4), have coefficients of determination of 

81.73%; 93.64% and 81.73% for the training set, respectively. For the cross-validation the values of Q2 (LOO) 

were 79.97%; 92.75% and 79.97%, correspondingly. The interpretation of these models and the rest are 
commented in the next subsection. 
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Table 4.Performance of the QSSAR MLR models. 

Model N*
 

Qtrain 

(%) 

R
2
 F p Q

2
LOO(%) 

Precursor 5 92.96 86.42 22.91 0.00 86.84 

Carbon(non-Yt) 6 90.41 81.73 12.68 0.00 79.97 

Carbon(non-%C) 6 96.77 93.64 41.74 0.00 92.75 

Carbon (non-%C, non-%)) 5 90.41 81.73 16.11 0.00 79.97  

Carbon(Wood) all 8 99.85 99.69 202.12 0.00 98.86 

Carbon(Wood) non-Yt 7 99.84 99.68 268.18 0.00 99.10 

Carbon(other materials) Yt 3 97.82 95.70 44.46 0.00 94.67 

*N: Number of attributes in the training model 

Later the carbons were separated into groups, one conformed by carbons from woods and other with 

carbons from other sources. For these two groups new models were developed are have improved values of 

performance compared with the previous three models. For the case of the models from woods using all eight 
variables, the coefficient of determination in training and cross-validation were 99.69% and 98.86%, 

respectively. In a second step one variable was removed and the experimental variance remains almost equal 

with a value of 99.68%, surprisingly for the cross-validation an increase of the value up to 99.10% was 

experimented.  

In the case of the model developed for the second group considering the other materials, the model 

explain the 99.50% and 94.67 of the experimental variance in training set and cross-validation procedure, 
respectively.  

From the results above can be observed more suitable to separate the materials at time to build the 
QSSAR because occurs an improvement of the performance of the models over those equations that consider all 

the sources of the activated carbons in one unique model.  

3.3. Interpretation of QSSAR models  

In the case of the precursors the following Equation 1 was obtained (R
2
 =86.42): 

663.36+P*542.31-d*218.48+d*324.40-%N*60.61-%C*8.36=S rap   (Eq. 1) 

Elemental composition of the raw materials must be carefully considered in order to obtain an 

acceptable product that can be used for environmental applications. As can be observed in the model higher 
values of the physical parameters have negative influence for the Specific surface area, related with the 

adsorption capacity. The details for the performance of the above model and others in this work are showed in 

Table 4. 

The raw material is important when comparing activated carbons, as the source directly influences the 

suitability of the carbon to its proposed application. Carbon commonly comes from a variety of sources. Wood 

based carbons are predominantly microporous and mesoporous but with some macroporous character, which 
provides a wider range of applications. 

The primary goal when carbon is activated is to increase the surface area to allow adsorption of 
different molecules. The surface area of activated carbons is very important as the larger the surface area, the 

greater the ability to adsorb contaminants.
25

Porosity is also important to provide proper contact of gases or 

liquid on activated carbons, and it is also related to the rate of adsorption across the adsorbent. It is a fact that 

raw materials with high porosity are not good as precursors for activated carbons synthesis; it explains the 
strong influence of this physical property on the later porosity development. 

For carbons using the six attributes the following MLR-QSSAR model was obtained (R
2
 =81.73):  

432.51Y*1.63+d*561.54+%N*46.18-%O*0.005-%H*1.46+%C*2.32=S pap 
       

(Eq. 2) 

The oxygen content resulted negative; this is expected since heat treatment eliminates some oxygen 

containing functional groups that are not stable at high temperatures. 
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The real density of activated carbons is also important when comparing the speed of adsorption of 

carbons with similar specifications. Activated carbons are dosed by weight so the lower density carbons will be 

added in greater volume. A higher volume of carbon will deliver a greater surface area for adsorption of micro-
pollutants. The higher surface area will usually deliver a higher adsorption rate and thus lower doses of 

activated carbons may be added to achieve the same result as for high doses of more dense grades. 

In order to achieve more accurate equations, the following assumptions could be incorporated into the 

models: 

Removing C and dap (R
2
 =93.64) 

425.22  20.22Y+22.90Y-*16.01+%N*-49.80+%H*29.59-%O*7.51=S tp   (Eq. 3) 

Removing C and (R
2
 =81.73)

664.11Y*1.63+d*561.54+%N*48.50-%O*2.32-%H*13.14=S pap    (Eq. 4) 

It was surprisingly found that removing variable C, better models were obtained. Carbon content is 

often the most critical parameter of the adsorbents and may be the predominant component of the Model, so its 
elimination to get better correlation coefficients is not a valid physicochemical assumption. 

To analyze the change in physicochemical properties during the activation process, materials were 
divided in two groups, first one only with woods and second one with the other materials (seeds, seed shells and 

agro-industrial wastes). It was found that there was a significant difference in performance when activated 

carbons are produced from wood compared with other precursors. 

The surface area of activated carbon can be precisely estimated using the equations here derived; 

however we should be careful when include or eliminate some variables from the equations. 

4.  Conclusions 

Most of the precursors studied here are feasible alternatives for activated carbons preparation adequate 

for environmental applications. The surface area development of the synthetized activated carbons can be 
successfully described through the multiple linear regression model used here, considering the initial 

precursor’s chemical composition as independent variables, such as the specific surface area of the activated 

carbons as the output variable for the developed systems. 

In the present study the better results were obtained with the QSSAR models for the activated carbons using 

wood as materials with correlation coefficients of 99.69% and 99.68% over the models developed considering 
the other materials. Finally, from the interpretation of the models could be observed that some removed 

variables like the percent of carbon are of high importance for the adsorbent material capacity. Hence, an 

important aspect that should be taken in consideration for any study of this type is the criteria of the experts in 

the field. This is with the aim to have valid assumptions in the models and discard the construction of trivial 
models that don’t reflect the true nature of the scientific problem. 
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