

International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.9, No.11 pp 113-120, 2016

Photoelectrocatalysis Performance of La₂O₃ Doped TiO₂/Ti Electrode in Degradation of Rhodamine B Organic Compound

Zul Arham¹, Muhammad Nurdin²*, Buchari Buchari³

¹Department Tarbiyah, State Islamic Institute (IAIN) of Kendari, Kendari 93117, Indonesia

²Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Kendari 93232, Indonesia.

³Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia.

Abstract : Photoelectrocatalytic degradation towards rhodamin B (RhB) organic compound has been conducted by using Lanthanum Oxide (La_2O_3) doped TiO₂/Ti as the working electrode compared to the TiO₂/Ti electrode. The preparation of the La₂O₃ doped TiO₂/Ti working electrode was conducted by using electrodeposition method and TiO₂/Ti was prepared using anodizing method to compare the data related to the activity of the electrodes. The result shows that during fabrication process of La₂O₃ doped TiO₂/Ti electrode the concentration of 0.05 mol/L ion La³⁺ with 10 minutes of doping period caused fine RhB degradation activity from each methods of photodegradation (PD), electrochemistry (EC), photocatalytic (PC), and photoelectrocatalytic (PEC). The optimum condition shows the La₂O₃ doped TiO₂/Ti electrode provided efficient degradation activity of RhB under PEC method by 98.04% compared to the others, while TiO₂/Ti electrode reaches 45.42%.

Key words: photoelectrocatalytic degradation, rhodamin B, La₂O₃, TiO₂/Ti.

Muhammad Nurdin et al /International Journal of ChemTech Research, 2016,9(11),pp 113-120.
