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Abstract: Chaos is an important applied area in nonlinear dynamical systems and it is
applicable to many real-world systems including the biological systems. Nerve
membranes are known to exhibit their own nonlinear dynamics which generate and
propagate action potentials. Such nonlinear dynamics in nerve membranes can produce
chaos in neurons and related bifurcations. In 1952, A.L. Hodgkin and A.F. Huxley
proposed a nonlinear dynamical system as a mathematical model of nerve membranes
based on their electrophysiological experiments with squid giant atoms. Chaos in nerve
membranes have been studied in the chaos literature both theoretically and
experimentally. In this paper, we investigate the qualitative properties of the well-known
FitzHugh-Nagumo (FHN) chaotic neuron model, which is a two-dimensional simplification of
the Hodgkin-Huxley model of spike generation in squid giant axons. Next, new results are
obtained for the hybrid chaos synchronization of the identical FitzHugh-Nagumo (FHN) neuron
model using adaptive control method. The main control result of this work is established using
Lyapunov stability theory. MATLAB plots have been shown to illustrate the phase portraits of
the FitzHugh-Nagumo (FHN) neuron model and the adaptive hybrid chaos synchronization of
the FHN neuron model.
Keywords: Chaos, chaotic systems, synchronization, neurons, FitzHugh-Nagumo system,
hybrid synchronization, adaptive control, stability.

1. Introduction

A dynamical system is called chaotic if it satisfies the three properties: boundedness, infinite recurrence
and sensitive dependence on initial conditions [1-2]. Chaos theory investigates the qualitative and numerical
study of unstable aperiodic behaviour in deterministic nonlinear dynamical systems.

In 1963, Lorenz [3] discovered a 3-D chaotic system when he was studying a 3-D weather model for
atmospheric convection. After a decade, Rössler [4] discovered a 3-D chaotic system, which was constructed
during the study of a chemical reaction.

 Recently, many 3-D chaotic systems have been announced in the literature such as Arneodo system [5],
Sprott systems [6], Chen system [7], Lü-Chen system [8], Cai system [9], Tigan system [10], etc.  Many new
chaotic systems have been also discovered in the recent years like Sundarapandian systems [11, 12],
Vaidyanathan systems [13-43], Pehlivan system [44], Pham system [45], etc.

In control theory, active control method is used when the parameters are available for measurement [46-
65]. Adaptive control is a popular control technique used for stabilizing systems when the system parameters
are unknown [66-80]. There are also other popular methods available for control and synchronization of
systems such as backstepping control method [81-87], sliding mode control method [88-100], etc.
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Recently, chaos theory is found to have important applications in several areas such as chemistry [101-
114], biology [115-138], memristors [129-141], electrical circuits [142], etc.

Chaos is an important applied area in nonlinear dynamical systems and it is applicable to many
real-world systems including the biological systems. Nerve membranes are known to exhibit their own
nonlinear dynamics which generate and propagate action potentials. Such nonlinear dynamics in nerve
membranes can produce chaos in neurons and related bifurcations.

In 1952, A.L. Hodgkin and A.F. Huxley proposed a nonlinear dynamical system as a mathematical
model of nerve membranes based on their electrophysiological experiments with squid giant atoms. Their
mathematical model is referred to as Hodgkin-Huxley equations in the literature [143]. Chaos in nerve
membranes have been studied in the chaos literature both theoretically and experimentally.

FitzHugh [144] and Nagumo [145] extended the Van der Pol equation in a planar field as a model for
action potentials of neurons.  FitzHugh-Nagumo (FHN) chaotic neuron model is a two-dimensional
simplification of the Hodgkin-Huxley model of spike generation in squid giant axons.

Synchronization of chaotic systems is a phenomenon that may occur when a chaotic oscillator drives
another chaotic oscillator.  In most of the synchronization approaches, the master-slave or drive-response
formalism is used. If a particular chaotic system is called the master or drive system, and another chaotic system
is called the slave or response system, then the idea of synchronization is to use the output of the master system
to  control  the  response  of  the  slave  system  so  that  the  slave  system  tracks  the  output  of  the  master  system
asymptotically. In the hybrid synchronization of chaotic systems, one set of the states are completely
synchronized while the other set of the states are anti-synchronized.

In this paper, we derive new results for the hybrid chaos synchronization of the identical forced
FitzHugh-Nagumo chaotic neuron models [146-147].

This paper is organized as follows. Section 2 details the dynamics and properties of the FitzHugh-
Nagumo chaotic neuron model. Section 3 describes our new results for the anti-synchronization of the identical
FitzHugh-Nagumo (FHN) chaotic neuron models using adaptive control method. The main control result
derived in this work is established using Lyapunov stability theory. Section 4 details the numerical simulations
illustrating the main result derived in this research paper. Section 5 contains the main conclusions of this work.

2. FitzHugh-Nagumo Chaotic Neuron Model

FitzHugh-Nagumo (FHN) chaotic system is one of the most intensely studied systems in neuroscience. Many
studies have been done on the significant and complex dynamical aspects of the FHN model including chaos,
bifurcation, circuit design, noise effects and filtering, coupling, etc.

FitzHugh-Nagumo (FHN) chaotic neuron model [146, 147] is described by the 2-D dynamics

0( 1)(1 ) ( )x x x x y I t
y bx

a= - - - +ì
í

=î

&

&
(1)

In Eq. (1), 0( )I t represents the external electrical stimulation

0( ) cos( ),aI t tw
w

= (2)

where a and w  are the amplitude (or strength) and frequency, respectively, of the applied field.
Also, 2 fw p=  (rad/s) and f (Hz) is the stimulus frequency.
It is known that the FHN system (1) is chaotic, when the parameter values are taken as

10,  1,  0.1,  0.1271b a fa = = = = (3)
For numerical simulations, we take (0) 0.2x = and (0) 0.2.y =

Figure 1 shows the 1x -waveform of the FitzHugh-Nagumo system (1).
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Figure 2 shows the 2x -waveform of the FitzHugh-Nagumo system (1).
Figure 3 shows the chaotic phase portrait of the FHN system (1).

Figure 1. x - waveform of the FitzHugh-Nagumo chaotic neuron model

Figure 2. y -waveform of the FitzHugh-Nagumo chaotic neuron model

Figure 3. Chaotic phase portrait of the FitzHugh-Nagumo chaotic neuron model
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3. Adaptive Hybrid Synchronization of the FitzHugh-Nagumo (FHN) Chaotic Neuron Models

In this section, we derive new results for the anti-synchronization of the FitzHugh-Nagumo (FHN) chaotic
neuron models via adaptive control method. The main control result is established via Lyapunov stability theory
[148].

As the master system, we consider the FitzHugh-Nagumo (FHN) chaotic neuron model given by

1 1 1 1 1 0

1 1

( 1)(1 ) ( )x x x x y I t
y bx

a= - - - +ì
í =î

&

&
(4)

where ,ba are unknown system parameters, and the external  electrical stimulation 0 ( ) cos( )aI t tw
w

=  is

known.
As the slave system, we consider the FitzHugh-Nagumo (FHN) chaotic neuron model given by

2 2 2 2 2 0

2 2

( 1)(1 ) ( ) x

y

x x x x y I t u
y bx u

a= - - - + +ì
í = +î

&

&
(5)

where ,x yu u are adaptive controls to be determined using estimates ˆ ( )ta and ˆ( )b t of the unknown parameters

a and ,b respectively.
We define the hybrid chaos synchronization errors as follows:

2 1

2 1

( ) ( ) ( )
( ) ( ) ( )
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e t y t y t

= -ì
í = +î
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Then the error dynamics is obtained as
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We consider the adaptive control defined by

( )

2 2
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where xk and yk are positive gain constants.
Substituting (8) into (7), we get the closed-loop control system as

( )

2 2
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We define the parameter estimation errors as
ˆ( ) ( )

ˆ( ) ( )b

e t t

e t b b t
a a a= -ìï

í
= -ïî

(10)

Using (9), the closed-loop system (8) can be simplified as follows:
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Differentiating (10) with respect to ,t we get
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We consider the Lyapunov function defined by

( )2 2 2 21( , , , )
2x y b x y bV e e e e e e e ea a= + + + (13)

which is positive definite on 4.R
Differentiating V along the trajectories of (11) and (12), we obtain

2 2 2 2
2 2 1 1 1 2
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In view of (14), we take the parameter update law as
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Next, we state and prove the main result of this section.
Theorem 1. The identical FitzHugh-Nagumo (FHN) chaotic neuron models (4) and (5) are globally and
exponentially hybrid synchronized by the adaptive control law (8) and the parameter update law (15), where

,x yk k are positive gain constants.
Proof. This result is a consequence of the Lyapunov stability theory [148].

The quadratic Lyapunov function V defined by (13) is positive definite on 4.R Substituting (15) into (14),
we obtain the time-derivative of V as

2 2
1 1 2 2V k e k e= - -& (16)

which is negative semi-definite on 4.R
Thus, using Barbalat’s lemma [148], we conclude that the error dynamics (11) is globally exponentially stable.

This completes the proof. n

4. Numerical Simulations

For numerical simulations, we use the classical fourth-order Runge-Kutta method (MATLAB) with step-
size 610h -= to solve the FitzHugh-Nagumo (FHN) chaotic neuron system (4), when the adaptive control law (7)
and the parameter update law (17) are implemented.

The external electrical stimulation is 0 ( ) cos( ),aI t tw
w

=  where 2 .fw p=

We take the parameter values as in the chaotic case, i.e. 10,  1,  0.1,  0.1271.b a fa = = = =
We take the positive gain constants as 10xk = and 10.yk =

We take the initial conditions of the master system (4) as 1(0) 6.4x = and 2 (0) 1.7.x =
We take the initial conditions of the slave system (5) as 1(0) 3.9y = and 2 (0) 4.2.y =

We take the initial condition of the parameter estimates as ˆ (0) 1.3a = and ˆ(0) 4.6.b =

Figures 4 and 5 show the hybrid chaos synchronization of the FitzHugh-Nagumo neuron models (4) and (5).

Figure 6 shows the time-history of the hybrid chaos synchronization errors ( )xe t and ( ).ye t
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Figure 4. Hybrid synchronization of the states 1x and 2x

Figure 5. Hybrid synchronization of the states 1y and 2y

Figure 6. Time-history of the hybrid chaos synchronization errors ( ), ( )x ye t e t
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5. Conclusions

In this paper, we investigated the qualitative properties of the well-known FitzHugh-Nagumo (FHN)
chaotic neuron model, which is a two-dimensional simplification of the Hodgkin-Huxley model of spike generation
in squid giant axons. Next, we derived new results for the adaptive hybrid chaos synchronization of the identical
FitzHugh-Nagumo (FHN) neuron models using Lyapunov stability theory. MATLAB plots were depicted to
illustrate the phase portraits of the FitzHugh-Nagumo (FHN) neuron model and the adaptive hybrid chaos
synchronization FHN neuron models.
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