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Abstract: Lotka-Volterra population biology models are important models that describe
the interaction between various biological species. Some important Lotka-Volterra
population biology models are predator-prey models, competitive biology models and
mutualistic biology models.  In this research work, we study the two-species mutualistic
biology models with carrying capacities and negative feedback. We show that for this
two-species mutualistic biology model, under an assumption, the two mutualistic species
have stable coexistence. Then we shall propose ecological monitoring of the two species
cooperating population biology models by constructing nonlinear observers for them
about their stable equilibrium points. The nonlinear observer design for the population
biology model is constructed by applying Sundarapandian’s theorem (2002) and using
only the dynamics of the two-species mutualistic population biology model and the
population size of any of the mutualistic species as the output function. Numerical
examples are given to illustrate the ecological monitoring or the nonlinear observer
design for the two-species cooperating biology model with stable coexistence. MATLAB
simulations are shown to illustrate the numerical results shown in this research work.
Keywords: Population biology, Lotka-Volterra model, mutualism, cooperating system, two-
species model, ecological monitoring, observer design, etc.

1. Introduction

Lotka-Volterra population biology models are important models that describe the interaction
between various biological species considered as predator-prey system [1-2]. In the population biology
literature, Lotka-Volterra two species competitive biology model is also well-known for the study of
competing population models [3]. There are certain classes of biological models like the drosophila
population models for which the dynamic behaviour cannot be sufficiently described by the Lotka-Volterra
population biology models. Such competitive behaviour of population biology systems can be modeled by
systems such as the Coleman-Gomatam logarithmic competitive biology model [4].

Mutualism is one of the major categories of the ecological interactions of the populations or
species, where both mutualistic species can gain via the interactions [5]. Similar interactions within the
same species are known as cooperation. A well-known example of mutualism is the relationship between
ungulates and bacteria within their intestines. The ungulates benefit from the cellulase produced by the
bacteria, which facilitates digestion and the bacteria benefit from having a stable supply of nutrients in the
host environment. This can also be observed in many different symbiotic relationships. Mutualism plays a
key part in ecology. In addition, mutualism is thought to have driven the evolution of much of the
biological diversity we see, such as flower forms and co-evolution between groups of species [6].
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We show that for the Lotka-Volterra two-species mutualistic biology model, under an assumption,
the two mutualistic species have stable co-existence. After discussion on the Lotka-Volterra two species
mutualistic biology models, we propose ecological monitoring of those biology models by explicitly
constructing local exponential observers for the Lotka-Volterra two-species mutualistic biology models.

In control systems engineering, a state observer is a system that provides an estimate of the internal
state of a given real system, from measurements of the input and output of the real system. It is typically
computer-implemented, and provides the basis of many practical applications.

The problem of designing observers for linear control systems was first proposed and fully solved by
Luenberger [7]. The problem of designing observers for nonlinear control systems was proposed by Thau [8].
Over the past three decades, significant attention has been paid in the control systems literature on the
construction of observers for nonlinear control systems [9].

A characterization of local exponential observers for nonlinear control systems was first obtained by
Sundarapandian [10]. In [10], necessary and sufficient conditions were obtained for exponential observers for
Lyapunov stable continuous-time nonlinear systems. In [10], an exponential observer design was provided by
Sundarapandian for nonlinear control systems, which generalizes the linear observer design of Luenberger [6]
for linear control systems.

In [11], Sundarapandian obtained necessary and sufficient conditions for exponential observers for
Lyapunov stable discrete-time nonlinear systems and also provided a formula for designing exponential
observers for Lyapunov stable discrete-time nonlinear systems. In [12], Sundarapandian derived new results for
the global observer design for nonlinear control systems.

The concept of nonlinear observers for nonlinear control systems was extended in many ways. In [13-
14], Sundarapandian derived new results for the characterization of local exponential observers for nonlinear
bifurcating systems. In [15-18], Sundarapandian derived new results for the exponential observer design for a
general class of nonlinear systems with real parametric uncertainty. In [19-22], Sundarapandian derived new
results for the general observers for nonlinear systems. In [23], Sundarapandian derived new results for
observers around equilibria. In [24-25], Sundarapandian derived new results for the local observer design of
periodic orbits of nonlinear systems.

In [26], Byrnes and Sundarapandian obtained a result for the persistence of equilibria for locally
asymptotically stable systems. In [27], Sundarapandian derived a result for the stabilizability and a separation
principle for periodic orbits. In [28], Sundarapandian derived a result for the global asymptotic stability of
nonlinear cascade systems. In [29], Sundarapandian derived a necessary condition for local asymptotic stability
of discrete-time nonlinear systems with parameters. In [30], Sundarapandian derived an invariance principle for
discrete-time nonlinear systems.

In [31], Sundarapandian derived a relation between the output regulation and the observer design for
nonlinear systems. In [32], Sundarapandian derived a necessary condition for local asymptotic stability of
periodic orbits of nonlinear systems with parameters. In [33], Sundarapandian gave a geometric proof of
Malkin’s stability theorem. In [34], Sundarapandian gave sufficient conditions for the local and global
asymptotic stability of nonlinear cascade interconnected systems. In [35], Sundarapandian derived distributed
control schemes for large-scale interconnected discrete-time linear systems. In [36-37], Sundarapandian
presented results for the observer design and stabilization of discrete-time linear systems. In [38-39],
Sundarapandian derived a necessary condition for the local asymptotic stability of nonlinear systems with
exogenous disturbance. In [40-41], Sundarapandian derived new results for the reduced order observer design
for nonlinear systems.

2. Review of Nonlinear Observer Design for Nonlinear Systems

We consider the nonlinear system described by
( )x f x=& (1a)
( )y h x= (1b)

where nxÎR is the state and pyÎR is the output.

https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/State_space_%28controls%29
https://en.wikipedia.org/wiki/State_space_%28controls%29
https://en.wikipedia.org/wiki/Input/output
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We assume that : ,n nf ®R R : n ph ®R R are 1C mappings and for some ,nx*ÎR the following hold:
( ) 0,   ( ) 0f x h x* *= = (2)

Remark 1. The solutions x*of ( ) 0f x = are called the equilibrium points of the system dynamics (1a). Also,
the assumption ( ) 0h x* = holds without any loss of generality. Indeed, if ( ) 0,h x* ¹ then we can define a new
output function as

( ) ( ) ( )x h x h xy *= - (3)
and it is easy to see that ( ) 0.xy * = n

The linearization of the nonlinear system (1a)-(1b) at x x*= is given by
x Ax=& (4a)
y Cx= (4b)

where

x x

fA
x *=

¶é ù= ê ú¶ë û
   and

x x

hC
x *=

¶é ù= ê ú¶ë û
(5)

Definition 1. [23]  A 1C dynamical system defined by
( , ),    ( )nz g z y z= Î& R (6)

is  called  a local asymptotic (respectively, local exponential) observer for the nonlinear system (1a)-(1b)
if the following two requirements are satisfied:
(O1) If (0) (0),z x= then ( ) ( ),z t x t= for all 0.t ³
(O2) There exists a neighbourhood V of the equilibrium nx*ÎR such  that  for  all (0), (0) ,z x VÎ

the estimation error
( ) ( ) ( )e t z t x t= - (7)

  decays asymptotically (respectively, exponentially) to zero as .t ®¥ n

Theorem 1. (Sundarapandian, [23]) Suppose that the nonlinear system dynamics (1a) is Lyapunov stable at the
equilibrium x x*= and that there exists a matrix K such that A KC- is Hurwitz. Then the dynamical system
defined by

( ) [ ( )]z f z K y h z= + -& (8)
is a local exponential observer for the nonlinear system (1a)-(1b). n
Remark 2. The estimation error is governed by the error dynamics

( ) ( ) [ ( ) ( )]e f x e f x K h x e h x= + - - + -& (9)
Linearizing the error dynamics (9) at ,x x*= we get the linear system

,e Ee=& where E A KC= - (10)

If ( , )C A is observable, then the eigenvalues of the error matrix E A KC= - can be arbitrarily placed
in the complex plane. Thus, when ( , )C A is observable, a local exponential observer of the form (8) can be
always found such that the transient response of the error decays quickly with any desired speed of
convergence. n

3. Lotka-Volterra Two Species Mutualistic Biology Models

In this section, we consider the Lotka-Volterra two-species mutualistic biology system [5], which is
modeled by the system of differential equations
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In (11), the two states 1x and 2x represent the population densities of the species 1 and 2, respectively.
Also, 1 2 1 2 1 2, , , , ,K Ka a b b are positive constants.   We note that 1 2,a a are  the  growth  rate  constants  of  the
population species 1 and 2. 1K and 2K represent the carrying capacities of the species 1 and 2 respectively. The
positive constants 1b  and 2b represent the cooperation or mutualism in the ecological interactions of the two
population species 1 and 2.

The equilibrium points of the system (11) are obtained by solving the system of equations

1
1 1 1 1 2

1

2
2 2 1 2

2
2

0

0

x x
K

x x
K

x

x

aa b

a
a b

ì æ ö
- +ï ç ÷

ï è ø
í

æ öï + -ç ÷ï è øî

=

=
 (12)

Clearly, there are three equilibrium points of the system (12) in the first quadrant given by

1
1 2 3

2

00
,   ,

0 0
K

E E E
K
é ùé ù é ù

= = =ê úê ú ê ú
ë û ë û ë û

(13)

In this paper, we suppose that the mutualistic biology system (11) satisfies the following assumption:
(H) 1 2 1 2 1 2 0.K Ka a b bD =- >

Under the assumption (H), there is a fourth equilibrium point for the system (11) given by

1
4

2

,
x

E
x

*

*

é ù
= ê ú
ë û

 where ( ) ( )2 1 1 2
1 1 1 2 2 2 2 1,K Kx K x Ka a

a b a b* *= + = +
D D

(14)

This can be seen as follows. If ( )1 2,x x* * is a positive equilibrium of the system (11), then Eq. (12) yields

1 2

1 2

1
1 1

1

2
2 2

2

0

0

x x
K

x x
K

aa b

aa b

* *

* *

ì
ï
ï
í
ï
ïî

- + =

+ - =
(15)

which can be expressed in matrix form as

1
1

1 11

22 2
2

2

K x
x

K

a
b

a
aab

*

*

é ù-ê ú é ù é ùê ú =ê ú ê úê ú ë ûë û-ê ú
ë û

(16)

        We note that the coefficient matrix of the system (16) has a non-zero determinant by assumption (H).
Thus, the system (16) has a unique solution.
Solving the system (16) by Cramer’s rule, we get

( ) ( )2 1 1 2
1 1 1 2 2 2 2 1,K Kx K x Ka a

a b a b* *= + = +
D D

(17)

By assumption (H), 0.D >  Thus, 1
4

2

x
E

x

*

*

é ù
= ê ú
ë û

is a positive equilibrium of the system (16).
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The Jacobian or community matrix of the Lotka-Volterra system (11) at 4E  is obtained as

1 1
1 1

1

2 2
2 2

2

x x
K

A
xx

K

a
b

ab

*
*

*
*

æ ö
-ç ÷
ç ÷= ç ÷

-ç ÷ç ÷
è ø

(18)

Next, we find the characteristic equation of the community matrix A as
2 Trace( ) det( ) 0A Al l- + = (19)

We note that

1 1 2 2

1 2

Trace( ) 0x xA
K K
a a* *

= - - < (20)

and

1 2

1 2

det( ) 0x xA
K K

* *D
= > (21)

Since all the coefficients of the quadratic equation (22) are positive, it is immediate from Hurwitz criterion [42]
that all the eigenvalues of the community matrix A are stable.
Thus, A is a Hurwitz matrix.
Thus, from Lyapunov stability theory [42], it is immediate that the positive equilibrium ( )4 1 2,E x x* * is locally
asymptotically stable. Hence, we have proved the following theorem.
Theorem 2. Suppose that the Lotka-Volterra two-species mutualistic biology system (11) satisfies the
assumption (H) stated as follows.

(H) 1 2 1 2 1 2 0.K Ka a b bD =- >

Then ( )4 1 2,E x x* * is a positive equilibrium of the system (11). Also, the unique positive equilibrium

( )4 1 2,E x x* * of the Lotka-Volterra mutualistic biology system (11) is locally asymptotically stable. n

4. Ecological Monitoring for the Lotka-Volterra Two-Species Mutualistic Biology Systems

In this section, we discuss how to do ecological monitoring of the Lotka-Volterra two-species
mutualistic biology systems by designing a local exponential observer to estimate their states.

 4.1 Ecological Monitoring of the Mutualistic Biology Models with Population Density of Species 1 as
Output

We consider the Lotka-Volterra two-species mutualistic biology system given by

1
1 1 1 1 2

1

2
2 2 1 2

2

1

2 2

x x
K

x x
K

x x

x x

aa b

a
a b

ì æ ö
- +ï ç ÷

ï è ø
í

æ öï + -ç ÷ï è øî

=

=

&

&

(22)

We suppose that the population density of species 1 is given as the system output, i.e.
1y x= (23)

We suppose that the assumption (H) holds so that ( )1 2,x x* * is a unique positive equilibrium of the system (22).
In Section 3, we showed that the community matrix of the system (22) about the unique positive equilibrium

( )1 2,x x* *  is given by
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1 1
1 1

1

2 2
2 2

2

x x
K

A
xx

K

a
b

ab

*
*

*
*

æ ö
-ç ÷
ç ÷= ç ÷

-ç ÷ç ÷
è ø

(24)

which is a Hurwitz matrix. Thus, the equilibrium ( )1 2,x x* * is locally asymptotically stable.

Moreover, the linearization of the output function (23) about the equilibrium ( )1 2,x x* * is given by

[ ]1 0C = (25)
Thus, the observability matrix for the system (22)-(23) is given by

1 1
1 1

1

1 0
C

W x xCA
K
a

b
*

*

é ù
é ù ê ú= =ê ú ê ú-ë û ê úë û

(26)

We find that
` 1 1det( ) 0W xb *= ¹ (27)
which shows that the observability matrix W has full rank.
Thus, by Kalman’s rank test for observability [43], the system (22)-(23) is completely observable.

Hence, by Sundarapandian’s theorem (Theorem 1, Section 2), we obtain the following main result, which gives
the ecological monitoring of the Lotka-Volterra two-species mutualistic biology systems.

Theorem 3. Suppose that the assumption (H) is satisfied. Then the Lotka-Volterra two-species mutualistic
biology system (22) with output (23) has a local exponential observer of the form

[ ]

1
1 1 1 1 2

11
1

2 2
2 2 2 1 1

2

z z z
Kz

L y z
z

z z z
K

aa b

a
a b

é ùæ ö
- +ê úç ÷

é ù è øê ú= + -ê ú ê úæ öë û ê ú+ -ç ÷ê úè øë û

&

&
(28)

where L is a matrix chosen such that A LC- is Hurwitz. Since ( , )C A is observable, an observer gain matrix L
can be found such that the error matrix E A LC= - has arbitrarily assigned set of stable eigenvalues. n

Example 1. We consider a Lotka-Volterra two species mutualistic biology system given by

( )
( )

1 1 1 2

2 2 1 2

2

4 2

x x x x

x x x x

= - +ìï
í

= + -ïî

&

&
(29)

where 1 0x ³  and 2 0.x ³
Suppose that the output function given by the density of mutualistic species 1, i.e.

1y x= (30)
Here,

1 2 1 2 1 22,  4,  2,  2,  1,  1K Ka a b b= = = = = = (31)
We note that

1 2 1 2 1 2 4 0K Ka a b bD = - = > (32)
Thus, the assumption (H) is satisfied.
We find the positive equilibrium of the system (29) by solving the equations

( )
( )

1 1 2

2 1 2

2 0

4 2 0

x x x

x x x

- + =ìï
í

+ - =ïî
(33)
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Since 1 0x ¹ and 2 0x ¹ , we obtain

1 2

1 2

2 0
4 2 0

x x
x x

- + =ì
í + - =î

(34)

Then the system (34) can be easily arranged in matrix form as

1

2

1 1 2
1 2 4

x
x

- é ùé ù é ù
=ê úê ú ê ú-ë û ë ûë û

(35)

By solving the linear system (35), we get the unique solution as

1 28,   6x x* *= = (36)
which is the positive equilibrium point of the Lotka-Volterra two-species mutualistic biology system (29).
As shown in Section 3, the Lotka-Volterra two-species mutualistic biology system (29) is locally asymptotically
stable about the unique positive equilibrium point ( )1 2, .x x* *

The linearization of the two-species mutualistic biology dynamics (29) at ( )1 2,x x* *  is given by

8 8
6 12

A
- -é ù

= ê ú-ë û
(37)

Since Trace( ) 20 0A = - < and det( ) 144 0A = > , it is evident that A is a Hurwitz matrix.

Also, the linearization of the output function (29) at ( )1 2,x x* * is given by

[ ]1 0C = (38)

It is easy to check that the observability matrix
C

W
CA
é ù

= ê ú
ë û

has full rank.

This shows that the given system (29) with output (30) is completely observable near the positive equilibrium
point ( )1 2, (8,6).x x* * =

For numerical simulations, we take 1(0) 2.5x = and 2 (0) 15.8.x =

Figure 1 illustrates that the unique positive equilibrium point ( )*
1 2, (8, 6)x x* =  is locally asymptotically stable.

Figure 1.  State Orbit of the Two-Species Mutualistic Biology System (32)

Since ( , )C A is observable, the eigenvalues of the error matrix E A LC= - can be placed arbitrarily.

Using the Ackermann’s formula [23] for the observer gain matrix, we can choose L so that the error matrix
E A LC= -  has the stable eigenvalues { }8, 8 .- -
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A simple calculation using MATLAB gives
4

.
  4

L
-é ù

= ê ú
ë û

(39)

By Theorem 3, a local exponential observer for the Lotka-Volterra two-species mutualistic system (29)-(30)
around the unique positive equilibrium point ( )*

1 2, (60, 80)x x* =  is given by

[ ]1 1 1 2
1

2 2 1 2

(2 ) 4
(4 2 )   4

z z z z
y z

z z z z
- + -é ù é ù é ù

= + -ê ú ê ú ê ú+ - ë ûë û ë û

&

&
(40)

For simulations, we choose the initial conditions of the plant dynamics (29) as
1 2(0) 12,   (0) 5x x= = (41)

Also, we choose the initial conditions of the observer dynamics (40) as
1 2(0) 4,   (0) 18z z= = (42)

Figures 2-3 depict the exponential convergence of the observer states 1z and 2z of the system (40) to the states

1x and 2x of the Lotka-Volterra two-species mutualistic biology system (29)-(30). Figure 4 shows the time-
history of the estimation errors 1 2,e e , where 1 1 1e z x= - and 2 2 2.e z x= -

Figure 2.  Synchronization of the states 1x and 1z

Figure 3.   Synchronization of the states 2x and 2z
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Figure 4. Time-history of the estimation errors 1e and 2e

4.2 Ecological Monitoring of the Mutualistic Models with Population Density of Species 2 as Output

We consider the Lotka-Volterra two-species mutualistic biology system given by

1
1 1 1 1 2

1

2
2 2 1 2

2

1

2 2

x x
K

x x
K

x x

x x

aa b

a
a b

ì æ ö
- +ï ç ÷

ï è ø
í

æ öï + -ç ÷ï è øî

=

=

&

&

(43)

We suppose that the population density of species 2 is given as the system output, i.e.
2y x= (44)

We suppose that the assumption (H) holds so that ( )1 2,x x* * is a unique positive equilibrium of the system (43).
In Section 3, we showed that the community matrix of the system (43) about the unique positive equilibrium

( )1 2,x x* *  is given by

1 1
1 1

1

2 2
2 2

2

x x
K

A
xx

K

a
b

ab

*
*

*
*

æ ö
-ç ÷
ç ÷= ç ÷

-ç ÷ç ÷
è ø

 , (45)

which is a Hurwitz matrix. Thus, the equilibrium ( )1 2,x x* * is locally asymptotically stable.

Moreover, the linearization of the output function (44) about the equilibrium ( )1 2,x x* * is given by

[ ]0 1C = (46)
Thus, the observability matrix for the system (43)-(44) is given by

2 2
2 2

2

0 1
C

W xxCA
K
a

b
*

*

é ù
é ù ê ú= =ê ú ê ú-ë û ê úë û

(47)

We find that
` 2 2det( ) 0,W xb *= - ¹ (48)
which shows that the observability matrix W has full rank.
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Thus, by Kalman’s rank test for observability [26], the system (43)-(44) is completely observable.

Hence, by Sundarapandian’s theorem (Theorem 1, Section 2), we obtain the following main result, which gives
the ecological monitoring of the Lotka-Volterra two-species mutualistic biology systems.

Theorem 4. Suppose that the assumption (H) is satisfied. Then the Lotka-Volterra two-species mutualistic
biology system (43) with output (44) has a local exponential observer of the form

[ ]

1
1 1 1 1 2

11
1

2 2
2 2 2 1 1

2

z z z
Kz

L y z
z

z z z
K

aa b

a
a b

é ùæ ö
- +ê úç ÷

é ù è øê ú= + -ê ú ê úæ öë û ê ú+ -ç ÷ê úè øë û

&

&
(49)

where L is a matrix chosen such that A LC- is Hurwitz. Since ( , )C A is observable, an observer gain matrix
L can be found such that the error matrix A LC- has arbitrarily assigned set of stable eigenvalues. n
Example 2. We consider a Lotka-Volterra two-species mutualistic biology system given by

( )
( )

1 1 1 2

2 2 1 2

4 2

2

x x x x

x x x x

= - +ìï
í

= + -ïî

&

&
(50)

where 1 0x ³ and 2 0.x ³
Suppose that the output function given by the density of competing species 2, i.e.

2y x= (51)
Here,

(52)
We note that

1 2 1 2 1 2 4 0 .K Ka a b bD = - = > (53)
Thus, the assumption (H) is satisfied.
We find the positive equilibrium of the system (55) by solving the equations

( )
( )

1 1 2

2 1 2

4 2 0

2 0

x x x

x x x

- + =ìï
í

+ - =ïî
(54)

Since 1 0x ¹ and 2 0x ¹ , we obtain

1 2

1 2

4 2 0
2 0

x x
x x

- + =ì
í + - =î

(55)

 Then the system (55) can be easily arranged in matrix form as

1

2

2 1 4
1 1 2

x
x

- é ùé ù é ù
=ê úê ú ê ú-ë û ë ûë û

(56)

By solving the linear system (56), we get the unique solution as

1 26,   8x x* *= = (57)
As shown in Section 3, the Lotka-Volterra two-species mutualistic biology system (55) is locally asymptotically
stable about the unique positive equilibrium point ( )1 2, .x x* *

The linearization of the Lotka-Volterra two-species mutualistic biology dynamics (49) at ( )1 2,x x* *  is given by

12 6
8 8

A
-é ù

= ê ú-ë û
(58)

Also, the linearization of the output function (56) at ( )1 2,x x* * is given by

[ ]0 1C = (59)
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It is easy to check that the observability matrix
C

W
CA
é ù

= ê ú
ë û

has full rank. This shows that the given system (55)

with output (56) is completely observable near the positive equilibrium point ( )1 2, (6,8).x x* * =

For numerical simulations, we take 1(0) 15.7x = and 2 (0) 2.5.x =

Figure 5 illustrates that the unique positive equilibrium point ( )1 2, (6,8)x x* * =  is locally asymptotically stable.

Figure 5.  State orbit of the two-species mutualistic biology system (50)

Since ( , )C A is observable, the eigenvalues of the error matrix E A LC= - can be placed arbitrarily.
Using the Ackermann’s formula [23] for the observer gain matrix, we can choose L so that the error matrix
E A LC= - has the stable eigenvalues { }8, 8 .- -
A simple calculation using MATLAB gives

8
.

4
L é ù
= ê ú-ë û

(60)

By Theorem 4, a local exponential observer for the two-species mutualistic biology system (50)-(51) around the
unique positive equilibrium point ( )1 2, (6,8)x x* * = is given by

[ ]1 1 1 2
2

2 2 1 2

(4 2 ) 8
(2 ) 4

z z z z
y z

z z z z
- +é ù é ù é ù

= + -ê ú ê ú ê ú+ - -ë ûë û ë û

&

&
(61)

For simulations, we choose the initial conditions of the plant dynamics (55) as
1 2(0) 12,   (0) 5x x= = (62)

Also, we choose the initial conditions of the observer dynamics (68) as
1 2(0) 7,   (0) 9z z= = (63)

Figures 6-7 depict the exponential convergence of the observer states 1z and 2z of the system (61) to the states

1x and 2x of the two-species mutualistic biology system (50)-(51). Figure 8 shows the time-history of the
estimation errors 1 2,e e , where 1 1 1e z x= - and 2 2 2.e z x= -
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Figure 6.  Synchronization of the states 1x and 1z

Figure 7.   Synchronization of the states 2x and 2z

Figure  8. Time-history of the estimation errors 1e and 2e
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5. Conclusions

In this paper, we described Lotka-Volterra two-species mutualistic biology models. We showed that
for this biological model, under an assumption, the two mutualistic species have stable coexistence. Then
we achieved ecological monitoring of the population biology model by constructing a nonlinear
exponential observer for the mutualistic biology model under study. The nonlinear observer design for the
mutualistic biology model was constructed by applying Sundarapandian’s theorem (2002) and using only
the dynamics of the Lotka-Volterra two-species mutualistic population biology model and any of the
density of the two mutualistic species as the output function. Numerical example and MATLAB
simulations were shown to illustrate the ecological monitoring or the nonlinear observer design for the
Lotka-Volterra two-species mutualistic biology models.
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