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Abstract: Lotka-Volterra population biology models are important models that describe
the interaction between various biological species. Some important Lotka-Volterra
population biology models are predator-prey models and competitive biology models.
There are certain classes of biological models like the drosophila population models for
which the dynamic behaviour cannot be sufficiently described by the Lotka-Volterra
population biology models. In this research work, we study the Coleman-Gomatam
logarithmic competitive biology models (1972). We show that for the Coleman-Gomatam
logarithmic biological model, under an assumption, the two competing species have
stable coexistence. Then we shall propose ecological monitoring of the Coleman-
Gomatam logarithmic competitive population biology models by constructing nonlinear
observers for them about their stable equilibrium points. The nonlinear observer design
for the population biology model is constructed by applying Sundarapandian’s theorem
(2002) and using only the dynamics of the Coleman-Gomatam logarithmic competitive
population biology model and the population size of any of the competitive species as the
output function. Numerical examples are given to illustrate the ecological monitoring or
the nonlinear observer design for the Coleman-Gomatam two-species logarithmic
competitive biology model with stable coexistence. MATLAB simulations are shown to
illustrate the numerical results shown in this research work.
Keywords: Population biology, Lotka-Volterra model, Coleman-Gomatam model,
logarithmic competitive model, two-species model, ecological monitoring, observer design,
etc.

1. Introduction

Lotka-Volterra population biology models are important models that describe the interaction
between various biological species considered as predator-prey system [1-2]. In the population biology
literature, Lotka-Volterra two species competitive biology model is also well-known for the study of
competing population models [3]. There are certain classes of biological models like the drosophila
population models for which the dynamic behaviour cannot be sufficiently described by the Lotka-Volterra
population biology models. In this work, we study the Coleman-Gomatam logarithmic competitive biology
models   ([4], 1972).  We show that for this biological model, under an assumption, the two competing
species have stable co-existence. After discussion on the Coleman-Gomatam logarithmic competitive biology
models, we propose ecological monitoring of the Coleman-Gomatam logarithmic competitive biology models
by explicitly constructing local exponential observers for the Coleman-Gomatam logarithmic competitive
biology models.

In control systems engineering, a state observer is a system that provides an estimate of the internal
state  of  a  given real  system, from measurements  of  the input  and output  of  the real  system. It  is  typically

https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/State_space_%28controls%29
https://en.wikipedia.org/wiki/State_space_%28controls%29
https://en.wikipedia.org/wiki/Input/output
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computer-implemented, and provides the basis of many practical applications.

The problem of designing observers for linear control systems was first proposed and fully solved by
Luenberger [5]. The problem of designing observers for nonlinear control systems was proposed by Thau [6].
Over the past three decades, significant attention has been paid in the control systems literature on the
construction of observers for nonlinear control systems [7].

A characterization of local exponential observers for nonlinear control systems was first obtained by
Sundarapandian [8]. In [8], necessary and sufficient conditions were obtained for exponential observers for
Lyapunov stable continuous-time nonlinear systems. In [8], an exponential observer design was provided by
Sundarapandian for nonlinear control systems, which generalizes the linear observer design of Luenberger [4]
for linear control systems.

In [9], Sundarapandian obtained necessary and sufficient conditions for exponential observers for
Lyapunov stable discrete-time nonlinear systems and also provided a formula for designing exponential
observers for Lyapunov stable discrete-time nonlinear systems. In [10], Sundarapandian derived new results for
the global observer design for nonlinear control systems.

The concept of nonlinear observers for nonlinear control systems was extended in many ways. In [11-
12], Sundarapandian derived new results for the characterization of local exponential observers for nonlinear
bifurcating systems. In [13-16], Sundarapandian derived new results for the exponential observer design for a
general class of nonlinear systems with real parametric uncertainty. In [17-20], Sundarapandian derived new
results for the general observers for nonlinear systems. In [21], Sundarapandian derived new results for
observers around equilibria. In [22-23], Sundarapandian derived new results for periodic orbits of nonlinear
control systems.

In this work, we discuss the properties and ecological monitoring of the two-species Coleman-
Gomatam logarithmic competitive biology models. In Section 2, we review the definition and results of
local  exponential  observers  for  nonlinear  systems.  In  Section  3,  we  describe  the  two  species  Coleman-
Gomatam logarithmic competitive biology models.  In Section 4, we describe the ecological monitoring or
the exponential observer design of the two-species Coleman-Gomatam logarithmic competitive biology
model. Section 5 contains the conclusions of this research work.

2. Review of Nonlinear Observer Design for Nonlinear Systems

An observer for a nonlinear system is a state estimator, and the states of the observer converge to the
states of the plant dynamics asymptotically or exponentially as time tends to infinity.

We consider the nonlinear system described by

( )x f x=& (1a)
( )y h x= (1b)

where nxÎR is the state and pyÎR is the output.
We assume that : ,n nf ®R R : n ph ®R R are 1C mappings and for some ,nx*ÎR the following hold:

( ) 0,   ( ) 0f x h x* *= = (2)

Remark 1. The solutions x*of ( ) 0f x = are called the equilibrium points of  the system dynamics (1a).  Also,
the assumption ( ) 0h x* = holds without any loss of generality. Indeed, if ( ) 0,h x* ¹ then we can define a new
output function as

( ) ( ) ( )x h x h xy *= - (3)
and it is easy to see that ( ) 0.xy * = n

The linearization of the nonlinear system (1a)-(1b) at x x*= is given by
x Ax=& (4a)
y Cx= (4b)

where
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x x

fA
x *=

¶é ù= ê ú¶ë û
   and

x x

hC
x *=

¶é ù= ê ú¶ë û
(5)

Definition 1. [21]  A 1C dynamical system defined by
( , ),    ( )nz g z y z= Î& R (6)

is  called  a local asymptotic (respectively, local exponential) observer for the nonlinear system (1a)-(1b)
if the following two requirements are satisfied:

(O1) If (0) (0),z x= then ( ) ( ),z t x t= for all 0.t ³
(O2) There exists a neighbourhood V of the equilibrium nx*ÎR such  that  for  all (0), (0) ,z x VÎ

the estimation error
( ) ( ) ( )e t z t x t= - (7)

 decays asymptotically (respectively, exponentially) to zero as .t ®¥ n

Theorem 1. (Sundarapandian, [21]) Suppose that the nonlinear system dynamics (1a) is Lyapunov stable at the
equilibrium x x*= and that there exists a matrix K such that A KC- is Hurwitz. Then the dynamical system
defined by

( ) [ ( )]z f z K y h z= + -& (8)
is a local exponential observer for the nonlinear system (1a)-(1b). n
Remark 2. The estimation error is governed by the error dynamics

( ) ( ) [ ( ) ( )]e f x e f x K h x e h x= + - - + -& (9)
Linearizing the error dynamics (9) at ,x x*= we get the linear system

,e Ee=& where E A KC= - (10)

If ( , )C A is observable, then the eigenvalues of the error matrix E A KC= - can be arbitrarily placed
in the complex plane. Thus, when ( , )C A is observable, a local exponential observer of the form (8) can be
always found such that the transient response of the error decays quickly with any desired speed of
convergence. n

3. Coleman-Gomatam Two Species Logarithmic Competitive Biology Models

In this section, we consider the Coleman-Gomatam two-species logarithmic competitive biology system
[4], which is modeled by the system of differential equations

1 1 11 1 12 2

2 21 1 22 2

1

2 2

( ln ln )
ln ln )(

a b x b x
a b x b x

x x
x x

- -ì
í - -î

=
=

&

&
(11)

In (11), 1 2, , ( , 1,2)ija a b i j = are positive constants, and 1 2,x x are population densities, which are greater than

one. We note that 1 2,a a are the growth rate constants for the species 1 and 2 respectively.  One of the reasons
for using the logarithmic terms lni jx x in (11) instead of the quadratic terms i jx x as in Lotka-Volterra model is

that the presence of a large jx suppresses the effectiveness of ix and so, a slowly increasing ln jx is preferable
in a two-species competitive biology model.

In this paper, we suppose that the competing species (11) satisfies the following assumption:

 (H) 12 11

22 21

b b
b b

<

The equilibrium points of the system (11) are obtained by solving the system of equations
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( )
( )

1 11 1 12 2

2 21 1 2

1

2 22

ln ln

ln

0
ln 0

b x b x

x

x a
x a b b x

ì - -ï
í
ïî

=

- - =
(12)

Clearly, 2 22 1 11/ /
1 2 3(0,0), (0, ), ( ,0)a b a bE E e E e are three equilibrium points of the system (11).

We are interested in finding a positive equilibrium ( )* *
4 1 2,E x x  of the system (11), which is obtained by solving

the system of equations (12) with the conditions that *
1 0x > and *

2 0.x >  Thus, we obtain the positive

equilibrium point ( )* *
4 1 2,E x x  by solving the equations

1 11 1 12 2

2 21 1 222

ln ln
ln

0
ln 0

b x b x
x

a
a b b x
- -ì

í
î

=
- - =

(13)

Define
1 1lny x= and 2 2ln .y x= (14)

Then the system (13) can be expressed as the linear system

11 12 1 1

21 22 2 2

b b y a
b b y a
é ù é ù é ù

=ê ú ê ú ê ú
ë û ë û ë û

(15)

The system (15) has a unique solution if and only if the coefficient matrix is non-singular, i.e.
11 22 12 21 0b b b bD = - ¹ (16)

By assumption (H), we know that
12 11

22 21

b b
b b

<    or 11 22 12 21 0b b b b- > (17)

Thus, we can use Cramer’s rule to solve the linear system of equations (15). We find that

1 12
1 1 22 2 12

2 22

a b
a b a b

a b
D = = -  and 11 1

2 2 11 1 21
21 2

b a
a b a b

b a
D = = - (18)

Since 0,D ¹  we get the unique solution of the linear system (15) as

1 1 22 2 12
1

11 22 12 21

a b a by
b b b b

D -
= =
D -

  and 2 2 11 1 21
2

11 22 12 21

a b a by
b b b b

D -
= =
D -

(19)

Thus, the positive equilibrium of the system (11) is obtained as
1

1
yx e
** =   and 2

2
yx e
** = (20)

The Jacobian or community matrix corresponding to 4 1 2( , )E x x* * is obtained as

12 1
11

2

21 2
22

1

b xb
x

A
b x b

x

*

*

*

*

æ ö
- -ç ÷

ç ÷= ç ÷
- -ç ÷ç ÷
è ø

(21)

Next, we find the characteristic equation of the community matrix A as
2 Trace( ) det( ) 0A Al l- + = (22)

We note that
11 22Trace( ) 0A b b= - - < (23)

11 22 12 21det( ) 0A b b b b= - > (24)

Since all the coefficients of the quadratic equation (22) are positive, it is immediate from Hurwitz
criterion [22] that all the eigenvalues of the community matrix A are stable.

Thus, A is a Hurwitz matrix.

Thus, from Lyapunov stability theory [24], it is immediate that the positive equilibrium ( )4 1 2,E x x* * is
locally asymptotically stable. Hence, we have proved the following theorem.
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Theorem 2. Suppose that the Coleman-Gomatam two-species logarithmic competitive biology system (11)
satisfies the assumption (H) stated as follows.

(H) 12 11

22 21

b b
b b

<

Then ( )4 1 2,E x x* * is a positive equilibrium of the system (11). Also, the unique positive equilibrium

( )4 1 2,E x x* * of the Lotka-Volterra population biology system (11) is locally asymptotically stable. n

4. Ecological Monitoring for the Coleman-Gomatam Two-Species Competitive Biology Systems

In this section, we discuss how to do ecological monitoring of the Coleman-Gomatam two-species
logarithmic competitive biology systems by designing a local exponential observer to estimate their states.

 4.1 Ecological Monitoring of the Competitive Models with Population Density of Species 1 as Output

We consider the Coleman-Gomatam two-species logarithmic competition biology system given by

1 1 11 1 12 2

2 21 1 22 2

1

2 2

( ln ln )
ln ln )(

a b x b x
a b x b x

x x
x x

- -ì
í - -î

=
=

&

&
(25)

We suppose that the population density of species 1 is given as the system output, i.e.
1y x= (26)

We suppose that the assumption (H) holds so that ( )1 2,x x* * is a unique positive equilibrium of the system (25).
In Section 3, we showed that the community matrix of the system (25) about the unique positive equilibrium

( )1 2,x x* *  is given by

12 1
11

2

21 2
22

1

b xb
x

A
b x b

x

*

*

*

*

æ ö
- -ç ÷

ç ÷= ç ÷
- -ç ÷ç ÷
è ø

, (27)

which is a Hurwitz matrix. Thus, the equilibrium ( )1 2,x x* * is locally asymptotically stable.

Moreover, the linearization of the output function (26) about the equilibrium ( )1 2,x x* * is given by

[ ]1 0C = (28)
Thus, the observability matrix for the system (25)-(26) is given by

12 1
11 *

2

1 0
C

W b xbCA
x

*

é ù
é ù ê ú= =ê ú ê ú- -ë û ê úë û

(29)

We find that

` 12 1
*
2

det( ) 0b xW
x

*

= - ¹ (30)

which shows that the observability matrix W has full rank.
Thus, by Kalman’s rank test for observability [25], the system (25)-(26) is completely observable.

Hence, by Sundarapandian’s theorem (Theorem 1, Section 2), we obtain the following main result,
which gives the ecological monitoring of the Coleman-Gomatam two-species logarithmic competition biology
systems.

Theorem 3. Suppose that the assumption (H) is satisfied. Then the Coleman-Gomatam two-species logarithmic
competitive biology system (25) with output (26) has a local exponential observer of the form
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( )
( ) [ ]1 1 11 1 12 21

1
2 2 21 1 22 22

ln ln
ln ln

z a b z b zz
K y z

z a b z b zz
- -é ùé ù

= + -ê úê ú - -ë û ë û

&

&
(31)

where K is a matrix chosen such that A KC- is Hurwitz. Since ( , )C A is observable, an observer gain matrix
K can be found such that the error matrix E A KC= - has arbitrarily assigned set of stable eigenvalues. n
Example 1. We consider a two species Coleman-Gomatam logarithmic competitive biology system given by

1 1 1 2

2 2 1 2

(31 8ln 5ln )
(42 9 ln 8ln )

x x x x
x x x x
= - -ì

í = - -î

&

&
(32)

where 1 1x ³ and 2 1.x ³
Suppose that the output function given by the density of competing species 1, i.e.

1y x= (33)
Here,

1 31,a = 2 42,a = 11 8,b = 12 5,b = 21 9,b = 22 8b = (34)
We note that

12 11

22 21

5 8
8 9

b b
b b

= < = (35)

Thus, the assumption (H) is satisfied.
We find the positive equilibrium of the system (32) by solving the equations

1 1 2

2 1 2

(31 8ln 5ln ) 0
(42 9ln 8ln ) 0

x x x
x x x

- - =ì
í - - =î

(36)

Since 1 0x ¹ and 2 0x ¹ , we obtain

1 2

1 2

31 8ln 5ln 0
42 9ln 8ln 0

x x
x x

- - =ì
í - - =î

(37)

We define
1 1 2 2ln ,  lny x y x= = (38)

Then the system (37) can be easily arranged in matrix form as

1

2

8 5 31
9 8 42

y
y
é ùé ù é ù

=ê úê ú ê ú
ë û ë ûë û

(39)

By solving the linear system (39), we get the unique solution as

1 22,   3y y* *= = (40)

Then the positive equilibrium ( )1 2,x x* * of the system (32) is obtained as

1 2
1 7.3891,yx e e

** = = = 2 3
2 20.0855yx e e

** = = = (41)
As shown in Section 3, the Coleman-Gomatam logarithmic competitive population biology system (32) is
locally asymptotically stable about the unique positive equilibrium point ( )1 2, .x x* *

The linearization of the Coleman-Gomatam population biology dynamics (32) at ( )1 2,x x* *  is given by

8 1.8394
24.4645 8

A
- -é ù

= ê ú- -ë û
(42)

Also, the linearization of the output function (33) at ( )1 2,x x* * is given by

[ ]1 0C = (43)

It is easy to check that the observability matrix
C

W
CA
é ù

= ê ú
ë û

has full rank.

This shows that the given system (32) with output (33) is completely observable near the positive equilibrium
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point ( )1 2, (7.3891,20.0855).x x* * =

For numerical simulations, we take 1(0) 5.2x = and 2 (0) 2.8.x =

Figure 1 illustrates that the unique positive equilibrium point ( )*
1 2, (7.3891, 20.0855)x x* =  is locally

asymptotically stable.

Figure 1.  State Orbit of the Coleman-Gomatam Competition Biology System (32)

Since ( , )C A is observable, the eigenvalues of the error matrix E A KC= - can be placed arbitrarily.

Using the Ackermann’s formula [25] for the observer gain matrix, we can choose K so that the error
matrix E A KC= -  has the stable eigenvalues { }6, 6 .- -

A simple calculation using MATLAB gives
4.0000
26.6391

K
-é ù

= ê ú-ë û
(44)

By Theorem 3, a local exponential observer for the Coleman-Gomatam logarithmic competitive biology system
(32)-(33) around the unique positive equilibrium point ( )*

1 2, (7.3891, 20.0855)x x* =  is given by

[ ]1 1 1 2
1

2 2 1 2

(31 8ln 5ln ) 4.0000
(42 9 ln 8ln ) 26.6391

z z z z
y z

z z z z
- - -é ù é ù é ù

= + -ê ú ê ú ê ú- - -ë ûë û ë û

&

&
(45)

For simulations, we choose the initial conditions of the plant dynamics (32) as
1 2(0) 2,   (0) 3x x= = (46)

Also, we choose the initial conditions of the observer dynamics (45) as
1 2(0) 10,   (0) 4z z= = (47)

Figures 2-3 depict the exponential convergence of the observer states 1z and 2z of the system (45) to the
states 1x and 2x of the Coleman-Gomatam logarithmic competitive biology system (32)-(33).
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Figure 2.  Synchronization of the states 1x and 1z         Figure 3.   Synchronization of the states 2x and 2z

4.1 Ecological Monitoring of the Competitive Models with Population Density of Species 2 as Output

We consider the Coleman-Gomatam two-species logarithmic competition biology system given by

1 1 11 1 12 2

2 21 1 22 2

1

2 2

( ln ln )
ln ln )(

a b x b x
a b x b x

x x
x x

- -ì
í - -î

=
=

&

&
(48)

We suppose that the population density of species 2 is given as the system output, i.e.
2y x= (49)

We suppose that the assumption (H) holds so that ( )1 2,x x* * is a unique positive equilibrium of the system (48).
In Section 3, we showed that the community matrix of the system (48) about the unique positive equilibrium

( )1 2,x x* *  is given by

12 1
11

2

21 2
22

1

b xb
x

A
b x b

x

*

*

*

*

æ ö
- -ç ÷

ç ÷= ç ÷
- -ç ÷ç ÷
è ø

, (50)

which is a Hurwitz matrix. Thus, the equilibrium ( )1 2,x x* * is locally asymptotically stable.

Moreover, the linearization of the output function (49) about the equilibrium ( )1 2,x x* * is given by

[ ]0 1C = (51)
Thus, the observability matrix for the system (48)-(49) is given by

21 2
22*

1

0 1
C

W b x bCA
x

*

é ù
é ù ê ú= =ê ú ê ú- -ë û ê úë û

(52)

We find that

` 21 2
*
1

det( ) 0b xW
x

*

= ¹ (53)

which shows that the observability matrix W has full rank.

Thus, by Kalman’s rank test for observability [25], the system (48)-(49) is completely observable.

Hence, by Sundarapandian’s theorem (Theorem 1, Section 2), we obtain the following main result, which gives
the ecological monitoring of the Coleman-Gomatam two-species logarithmic competition biology systems.
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Theorem 4. Suppose that the assumption (H) is satisfied. Then the Coleman-Gomatam two-species logarithmic
competitive biology system (48) with output (49) has a local exponential observer of the form

( )
( ) [ ]1 1 11 1 12 21

2
2 2 21 1 22 22

ln ln
ln ln

z a b z b zz
K y z

z a b z b zz
- -é ùé ù

= + -ê úê ú - -ë û ë û

&

&
(54)

where K is a matrix chosen such that A KC- is Hurwitz. Since ( , )C A is observable, an observer gain matrix
K can be found such that the error matrix E A KC= - has arbitrarily assigned set of stable eigenvalues. n
Example 2. We consider a two species Coleman-Gomatam logarithmic competitive biology system given by

1 1 1 2

2 2 1 2

(34 6ln 5ln )
(52 8ln 10 ln )

x x x x
x x x x
= - -ì

í = - -î

&

&
(55)

where 1 1x ³ and 2 1.x ³
Suppose that the output function given by the density of competing species 2, i.e.

2y x= (56)
Here,

1 34,a = 2 52,a = 11 6,b = 12 5,b = 21 8,b = 22 10b = (57)
We note that

12 11

22 21

1 3
2 4

b b
b b

= < = (58)

Thus, the assumption (H) is satisfied.
We find the positive equilibrium of the system (55) by solving the equations

1 1 2

2 1 2

(34 6ln 5ln ) 0
(52 8ln 10ln ) 0

x x x
x x x

- - =ì
í - - =î

(59)

Since 1 0x ¹ and 2 0x ¹ , we obtain

1 2

1 2

34 6ln 5ln 0
52 8ln 10ln 0

x x
x x

- - =ì
í - - =î

(60)

We define
1 1 2 2ln ,  lny x y x= = (61)

Then the system (60) can be easily arranged in matrix form as

1

2

6 5 34
8 10 52

y
y
é ùé ù é ù

=ê úê ú ê ú
ë û ë ûë û

(62)

By solving the linear system (62), we get the unique solution as

1 24,   2y y* *= = (63)

Then the positive equilibrium ( )1 2,x x* * of the system (55) is obtained as

1 4
1 54.5982,yx e e

** = = = 2 2
2 7.3891yx e e

** = = = (64)
As shown in Section 3, the Coleman-Gomatam logarithmic competitive population biology system (55) is
locally asymptotically stable about the unique positive equilibrium point ( )1 2, .x x* *

The linearization of the Coleman-Gomatam population biology dynamics (55) at ( )1 2,x x* *  is given by

6 36.9453
1.0827 10

A
- -é ù

= ê ú- -ë û
(65)

Also, the linearization of the output function (56) at ( )1 2,x x* * is given by

[ ]0 1C = (66)

It is easy to check that the observability matrix
C

W
CA
é ù

= ê ú
ë û

has full rank. This shows that the given system (55)
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with output (56) is completely observable near the positive equilibrium point ( )1 2, (54.5982,7.3891).x x* * =

For numerical simulations, we take 1(0) 11.7x = and 2 (0) 1.5.x =

Figure 4 illustrates that the unique positive equilibrium point ( )1 2, (54.5982,7.3891)x x* * =  is locally
asymptotically stable.

Figure 4.  State Orbit of the Coleman-Gomatam Competition Biology System (55)

Since ( , )C A is observable, the eigenvalues of the error matrix E A KC= - can be placed arbitrarily.
Using the Ackermann’s formula [25] for the observer gain matrix, we can choose K so that the error matrix
E A KC= -  has the stable eigenvalues { }6, 6 .- -
A simple calculation using MATLAB gives

36.9453
.

4.0000
K

-é ù
= ê ú-ë û

(67)

By Theorem 4, a local exponential observer for the Coleman-Gomatam logarithmic competitive biology system
(55)-(56) around the unique positive equilibrium point ( )1 2, (54.5982,7.3891)x x* * = is given by

[ ]1 1 1 2
2

2 2 1 2

(34 6ln 5ln ) 36.9453
(52 8ln 10 ln ) 4.0000

z z z z
y z

z z z z
- - -é ù é ù é ù

= + -ê ú ê ú ê ú- - -ë ûë û ë û

&

&
(68)

For simulations, we choose the initial conditions of the plant dynamics (55) as
1 2(0) 12,   (0) 5x x= = (69)

Also, we choose the initial conditions of the observer dynamics (68) as
1 2(0) 7,   (0) 9z z= = (70)

Figures 5-6 depict the exponential convergence of the observer states 1z and 2z of the system (68) to the
states 1x and 2x of the Coleman-Gomatam logarithmic competitive biology system (55)-(56).
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Figure 5.  Synchronization of the states 1x and 1z     Figure 6.   Synchronization of the states 2x and 2z

5. Conclusions

In this paper, we described Coleman-Gomatam two-species logarithmic competitive biology models.
We showed that for this biological model, under an assumption, the two competing species have stable
coexistence. Then we achieved ecological monitoring of the population biology model by constructing a
nonlinear exponential observer for the competitive biology model under study. The nonlinear observer
design for the competitive biology model was constructed by applying Sundarapandian’s theorem (2002)
and using only the dynamics of the Coleman-Gomatam two-species logarithmic competitive population
biology model and any of the density of the two competing species as the output function. Numerical
example and MATLAB simulations were shown to illustrate the ecological monitoring or the nonlinear
observer design for the two-species Coleman-Gomatam logarithmic competitive biology models.
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