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Abstract: Chaos theory has important applications in Science and Engineering. Recently,
there is an active research on the applications of chaos theory to many real-world systems
including the biological systems. Nerve membranes are known to exhibit their own
nonlinear dynamics which generate and propagate action potentials. Such nonlinear
dynamics in nerve membranes can produce chaos in neurons and related bifurcations. In
1952, A.L. Hodgkin and A.F. Huxley proposed a nonlinear dynamical system as a
mathematical model of nerve membranes based on their electrophysiological experiments
with squid giant atoms. Chaos in nerve membranes have been studied in the chaos
literature both theoretically and experimentally.  In this research work, we discuss the
properties of the Birkhoff-Shaw strange chaotic attractor (1981), which is a forced
oscillator. Birkhoff-Shaw strange chaotic attractor exhibits the structure of beaks and
wings, typically observed in chaotic neuronal models. We also derive new results for the
synchronization of identical Birkhoff-Shaw chaotic attractors via adaptive control
method. All the main results for the Birkhoff-Shaw chaotic attractor are proved using Lyapunov
stability theory. Also, numerical simulations have been plotted using MATLAB to illustrate the
main results for the Birkhoff-Shaw chaotic attractor.
Keywords: Chaos, chaotic systems, biology, neurons, synchronization, Birkhoff-Shaw
attractor, etc.

1. Introduction

Chaos theory describes the qualitative study of deterministic chaotic dynamical systems, and a chaotic
system must satisfy three properties: boundedness, infinite recurrence and sensitive dependence on initial
conditions [1-2].

In 1963, Lorenz [3] discovered a 3-D chaotic system when he was studying a 3-D weather model for
atmospheric convection. After a decade, Rössler [4] discovered a 3-D chaotic system, which was constructed
during the study of a chemical reaction. These classical chaotic systems paved the way to the discovery of
many 3-D chaotic systems such as Arneodo system [5], Sprott systems [6], Chen system [7], Lü-Chen system
[8], Cai system [9], Tigan system [10], etc.  Many new chaotic systems have been also discovered in the recent
years like Sundarapandian systems [11, 12], Vaidyanathan systems [13-42], Pehlivan system [43], Pham
system [44], etc.

Chaos theory is applicable to many real-world systems including the biological systems. Nerve
membranes are known to exhibit their own nonlinear dynamics which generate and propagate action
potentials. Such nonlinear dynamics in nerve membranes can produce chaos in neurons and related
bifurcations. In 1952, A.L. Hodgkin and A.F. Huxley proposed a nonlinear dynamical system as a
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mathematical model of nerve membranes based on their electrophysiological experiments with squid giant
atoms. Their mathematical model is referred to as Hodgkin-Huxley equations in the literature [45]. Chaos
in nerve membranes have been studied in the chaos literature both theoretically and experimentally.

In this research work, we discuss the qualitative properties of the Birkhoff-Shaw chaotic attractor
(1981, [46]), which is a forced oscillator. Birkhoff-Shaw strange chaotic attractor exhibits the structure of
beaks and wings, typically observed in chaotic neuronal models. We also derive new results for the global
chaos synchronization of the Birkhoff-Shaw chaotic attractors via adaptive control method. All the main
results are proved using Lyapunov stability theory [47].

In control theory, active control method is used when the parameters are available for measurement
[48-68]. Adaptive control is a popular control technique used for stabilizing systems when the system
parameters are unknown [69-82]. There are also other popular methods available for control and
synchronization of systems such as backstepping control method [83-89], sliding mode control method [90-
101], etc.

Recently, chaos theory is found to have important applications in several areas such as chemistry [102-
107], biology [108-117], memristors [118-121], electrical circuits [122], etc.

2. Birkhoff-Shaw Chaotic Attractor

Shaw (1981, [46]) derived a strange chaotic attractor, called as the Birkhoff-Shaw chaotic attractor, which is
described by the 2-D system of differential equations
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where 1 2,x x are the states and ,a b are positive constants.

The Birkhoff-Shaw system (1) is chaotic [46] when the parameter values are taken as

0.7,  10a b= = (2)

For numerical simulations, we take the initial conditions as 1(0) 0.2x = - and 2 (0) 0.2.x =

The  2-D  phase  portrait  of  the  Birkhoff-Shaw  strange  chaotic  attractor  is  depicted  in  Figure  1.  This  type  of
chaotic behaviour is a common feature for the chaotic behaviour observed in neurons.
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Figure 1. The 2-D phase portrait of the Birkhoff-Shaw Chaotic Attractor

3. Adaptive Synchronization of the Birkhoff-Shaw Chaotic Attractors

The chaotic behaviour of the Birkhoff-Shaw chaotic behaviour [46] is similar to the chaotic behaviour
observed in neurons.  In this section, we investigate the global chaos synchronization of Birkhoff-Shaw chaotic
attractors via adaptive control method.

As the master system, we consider the Birkhoff-Shaw chaotic system given by
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In (3), 1 2,x x are the states and ,a b are unknown system parameters.
As the slave system, we consider the controlled Birkhoff-Shaw chaotic system given by
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In (4), 1 2,y y are the states and 1 2,u u are adaptive controls to be determined.
The synchronization error between the chaotic systems (3) and (4) is defined by

1 1 1
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Then the synchronization error dynamics is obtained as
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We consider the adaptive controller defined by
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where 1 2,k k are positive gain constants.
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Substituting (7) into (6), we get the closed-loop error dynamics given by
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We define the parameter estimation errors as follows:
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Using (9), we can simplify the closed-loop error dynamics (8) as follows.
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Differentiating the parameter estimation errors (9) with respect to time, we get
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Next, we consider the candidate Lyapunov function given by
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which is a positive definite function on 4.R
Differentiating V along the trajectories of (10) and (11), we obtain

( )2 2 2 2
1 1 2 2 1 2 1 1 2 1 2

ˆˆa bV k e k e e e e a e e y y x x bé ùé ù= - - + - + - - -ë û ê úë û
&&& (13)

In view of (13), we take the parameter estimates as follows:
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Next, we state and prove the main result of this section.

Theorem 1. The Birkhoff-Shaw chaotic attractors (3) and (4) are globally and exponentially synchronized by
the adaptive control law (7) and the parameter update law (14), where 1 2,k k are positive gain constants.

 Proof. The quadratic Lyapunov function V defined by Eq. (12) is a positive definite function on 4.R

Substituting the parameter update law (14) into (13), the time-derivative of V is obtained as

2 2
1 1 2 2 ,V k e k e= - -& (15)

which is a negative semi-definite function on 4.R

Thus, by Barbalat’s lemma in Lyapunov stability theory [47], we conclude that the synchronization errors

1 2( ), ( )e t e t  converge to zero exponentially as t ®¥ for all initial conditions 2(0) .e ÎR

This completes the proof. n

4. Numerical Simulations

We use classical fourth-order Runge-Kutta method in MATLAB with step-size 810h -= for solving the
systems of differential equations given by (3), (4) and (14). We take the gain constants as 1 5k = and 2 5.k =
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The parameter values of the Birkhoff-Shaw chaotic attractors are taken as in the chaotic case (2), i.e.

0.7,  10a b= =

We take the initial conditions of the Birkhoff-Shaw chaotic attractor (3) as

1 2(0) 5.2,   (0) 8.7x x= =

We take the initial conditions of the Birkhoff-Shaw chaotic attractor (4) as

1 2(0) 9.3,   (0) 2.1y y= =

Also, we take the initial conditions of the parameter estimates as

ˆˆ(0) 12.4,  (0) 16.9a b= =

Figures 2-3 show the complete synchronization of the Birkhoff-Shaw chaotic attractors (3) and (4).

Figure 4 shows the time-history of the synchronization errors 1 2( ), ( ).e t e t

Figure 2. Synchronization of the states 1x and 1y

Figure 3. Synchronization of the states 2x and 2y
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Figure 4. Time-history of the synchronization errors 1 2,e e

5. Conclusions

In this paper, chaos in neurons was discussed and new results have been derived for the analysis and
adaptive synchronization of the Birkhoff-Shaw chaotic attractor (1981) with unknown system parameters. Main
results were established using Lyapunov stability theory. MATLAB simulations have been show to demonstrate
and validate all the results derived in this paper for the properties and adaptive synchronization of the Birkhoff-
Shaw chaotic attractor.
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