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Abstract: Recent research has shown the importance of biological control in many 

biological systems appearing in nature. In computer science, machine learning and 

biology, cellular neural networks (CNN) are a parallel computing paradigm, similar to 

neural networks with the difference that communication is allowed between neighbouring 

units only. CNN has wide applications and recently, CNN is found to have many 

applications in biology and applied areas of biology. Chua and Yang introduced the 

cellular neural network (CNN) in 1988 as a nonlinear dynamical system composed by an 

array of elementary and locally interacting nonlinear subsystems, which are called cells.  

In this research work, we discuss the properties of the 3-cells CNN attractor discovered 

by Arena et al. (1998). We also derive new results for the adaptive biological control of 

the 3-cells CNN attractor. All the main results are proved using Lyapunov stability theory. 

Also, numerical simulations have been plotted using MATLAB to illustrate the main results for 

the 3-cells cellular neural network (CNN) attractor. 

Keywords: Chaos, chaotic systems, biology, biological control, cellular neural networks, 

CNN attractor, etc. 
 

 

Introduction 
 

Chaos theory describes the qualitative study of deterministicchaotic dynamical systems, and a chaotic 

system must satisfy three properties: boundedness, infinite recurrence and sensitive dependence on initial 

conditions [1-2].  

The first famous chaotic system was discovered by Lorenz, when he was developing a 3-D weather 

model for atmospheric convection in 1963[3].  Subsequently, Rössler discovered a 3-D chaotic system in 1976 

[4], which is algebraically much simpler than the Lorenz system. These classical systems were followed by the 

discovery of many 3-D chaotic systems such as Arneodo system [5], Sprott systems [6], Chen system [7], Lü-

Chen system[8], Cai system[9], Tigan system [10], etc. Many new chaotic systems have been also discovered 

in the recent years like Sundarapandian systems [11, 12], Vaidyanathan systems [13-37], Pehlivan system [38], 

Pham system [39], etc.   

Recent research has shown the importance of biological control in many biological systems appearing 

in nature. In computer science, machine learning and biology, cellular neural networks (CNN) are a parallel 

computing paradigm, similar to neural networks with the difference that communication is allowed between 

neighbouring units only. CNN has wide applications and recently, CNN is found to have many applications in 

biology and applied areas of biology.  

In 1988, Chua and Yang introduced the cellular neural network (CNN) as a nonlinear dynamical 

system composed by an array of elementary and locally interacting nonlinear subsystems, which are called cells 

[40].  In this research work, we discuss the properties of the 3-cells CNN attractor discovered by Arena et al. 

[41]. 

  We also derive new results for the adaptive biological control of the 3-cells CNN attractor.  All the 
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main results are proved using Lyapunov stability theory [42]. Also, numerical simulations have been plotted 

using MATLAB to illustrate the main results for the 3-cells cellular neural network (CNN) attractor. 

Active control method is a feedback control strategy which works with the knowledge of system 

parameters [43-57]. Adaptive control method is a feedback control strategy which is very effective in control 

theory because it makes use of the estimates of the unknown parameters of the system [58-73].Chaos theory 

has many important applications in chemistry [74] and biology [75]. 

3-Cells CNN Attractor 

 
Arena et al.(1998, [41]) derived a 3-cells cellular neural network (CNN) attractor, which is described by the 

3-D system of differential equations 
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where 
1 2 3, ,x x x are the states, , , ,a b   are positive constants and the function ( )f z is defined by 

 ( ) 0.5 (| 1| | 1|)f z z z     where zR        (2) 

In [41], it was shown that the 3-cells CNN system (1) is chaotic when we take the parameter values as 

 1.24,   1.1,   4.4a    and 3.21.b         (3) 

For numerical simulations, we take the initial conditions as 
1(0) 0.1,x  2 (0) 0.1x  and

3(0) 0.1.x   

The 3-D phase portrait of the 3-cells CNNattractor(1) is depicted in Figure 1. The 2-D projections of 

the 3-cells CNN attractor (1) on the coordinate planes are depicted in Figures 2-4. 

 

Figure1.The3-D phase portrait of the 3-cells CNNattractor 
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Figure2.The2-D projection of the 3-cells CNN attractor on 
1 2( , )x x plane 

 

Figure3.The2-D projection of the 3-cells CNN attractor on 
2 3( , )x x plane 

 

Figure4.The2-D projection of the 3-cells CNN attractor on 
1 3( , )x x plane 
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Adaptive Control of the 3-Cells Cellular Neural Network (CNN) Attractor 
 

The chaotic behaviour of the 3-cells cellular neural network (CNN) attractor [41] is a well-known 

example of a chaotic CNN system. In this section, we consider the controlled 3-cells CNN attractor given by the 

3-D dynamics 
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In (4),
1 2 3, ,x x x  are the states and 

1 2 3, ,u u u are the adaptive controls to be found using estimates of the 

unknown parameters , , ,a b  of the system. Also, the function ( ),f z zR is defined by the equation (2). 

We consider the adaptive controller defined by 
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where 
1 2 3, ,k k k are positive gain constants. 

Substituting (5) into (4), we get the closed-loop control system given by 
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We define parameter estimation errors as follows: 
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Using (7), we can simplify the closed-loopplant dynamics (6) as follows. 
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Differentiating the parameter estimation errors (8) with respect to time, we get 
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Next, we consider the candidate Lyapunov function given by 

 2 2 2 2 2 2 2

1 2 3 1 2 3

1
( , , , , , , ) ,

2
a b a bV x x x e e e e x x x e e e e              (10) 

which is a positive definite function on 7.R  



Sundarapandian Vaidyanathan /Int.J. PharmTech Res. 2015,8(4),pp 632-640. 

 
 
 

636 

 

Differentiating V along the trajectories of (8) and (9), we obtain 
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In view of (11), we take the parameter estimates as follows: 

 

 

1 1

2 2

2 3 3 2

1 2 3 2 3 1

ˆ ( )

ˆ ( )

ˆ ( ) ( )

ˆ ( ) ( ) ( ) ( )

x f x

x f x

a x f x x f x

b x f x f x x x f x





 

 


  


    









       (12) 

Theorem 1.The 3-cells CNN chaotic attractor (4) is exponentially stabilized by the adaptive control law (5) 

and the parameter update law (12), where 
1 2 3, ,k k k are positive gain constants. 

Proof. The quadratic Lyapunov function V defined by Eq. (10) is a positive definite function on 7.R  

Substituting the parameter update law (12) into (11), the time-derivative of V is obtained as 

2 2 2

1 1 2 2 3 3 ,V k e k e k e                        (13) 

which is a negative semi-definite function on 7.R  

Thus, by Lyapunov stability theory [42], we conclude that the controlled state 

vector ( ) 0x t  exponentially as t  for all initial conditions 3(0) .x R  

Hence, the 3-cells CNN chaotic attractor (4) is exponentially stabilized by the adaptive control law (5) 

and the parameter update law (12). 

This completes the proof.   

Numerical Simulations 

We use classical fourth-order Runge-Kutta method in MATLAB with step-size for solving the 

systems of differential equations given by (4) and (12).  

We take the gain constants as 
 

1 2 38,   8,   8k k k    

The parameter values of the 3-cells CNN chaotic attractor (4) are taken as in the chaotic case, viz.
 

 1.24,   1.1,   4.4,a    3.21.b    

We take the initial conditions of the 3-cells CNN chaotic attractor(4) as 
 

1 2 3(0) 9.4,    (0) 5.3,    (0) 7.2x x x    

Also, we take the initial conditions of the parameter estimates as 

ˆˆ ˆ(0) 5.4,   (0) 3.1,   (0) 12.5,a    ˆ(0) 17.2b   

Figure5showsthe time-history of the exponential convergence of the states 
1 2 3, ,x x x to zero. 
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Figure 5. Time-history of the controlled states 1 2 3, ,x x x  

 

Conclusions 
 

In this paper, new results have been derived for the analysis and adaptivecontrol of the3-cells cellular 

neural network (CNN) chaotic attractor obtained by Arena et al.  (1998). After a description and phase portraitsof 

the 3-cells CNN chaotic attractor,  we have designed an adaptive feedback controller for the global exponential 

stabilization of the states of the 3-cells CNN chaotic attractor. The main results have been proved using Lyapunov 

stability theory and numerical simulations have been illustrated using MATLAB. 
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