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Abstract: Chaos in nonlinear dynamics occurs widely in physics, chemistry, biology, ecology, 

secure communications, cryptosystems and many other scientific disciplines. Chaotic systems 

have many important applications in science and engineering. This paper derives new results for 

the analysis and adaptive control of a chemical chaotic attractor discovered by Haung (2005). 

This paper starts with a detailed description of the chemical reactor dynamics and the parameter 

values for which the chemical reactor exhibits chaotic behaviour. Next, adaptive control law is 

devised for the global chaos control of the chemical chaotic reactor with unknown parameters. 

The main results for adaptive control of the chemical chaotic attractor are established using 

Lyapunov stability theory. Next, the main results are illustrated with numerical simulations using 

MATLAB. 
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Introduction 

Chaos theory describes the qualitative study of unstable aperiodic behaviour in deterministic nonlinear 

dynamical systems. For the motion of a dynamical system to be chaotic, the system variables should contain 

some nonlinear terms and the system must satisfy three properties: boundedness, infinite recurrence and 

sensitive dependence on initial conditions [1-2].  

The first famous chaotic system was discovered by Lorenz, when he was developing a 3-D weather 

model for atmospheric convection in 1963[3].  Subsequently, Rössler discovered a 3-D chaotic system in 

1976 [4], which is algebraically much simpler than the Lorenz system. These classical systems were followed 

by the discovery of many 3-D chaotic systems such as Arneodo system [5], Sprott systems [6], Chen system 

[7],  Lü-Chen system[8], Cai system[9], Tigan system [10], etc. Many new chaotic systems have been also 

discovered in the recent years such as Sundarapandian systems [11, 12], Vaidyanathan systems [13-20], 

Pehlivan system [21], Jafari system[22],Pham system [23], etc. 

Chaos theory has very useful applications in many fields of science and engineering such as 

oscillators[24], lasers [25-26],biology [27], chemical reactions [28-30], neural networks[31-32],robotics [33-

34], electrical circuits [35-36], etc. 

This paper investigates the analysis and adaptive control of the chemical chaotic reactor model 

discovered by Haung in 2005 [37]. Haung derived the chemical reactor model by considering reactor 

dynamics with five reversible steps. For the non-dimensionalized dynamical evolution equations of the 

Haung’s chaotic reactor, the Lyapunov exponents have been obtained as and 

The presence of a positive Lyapunov exponent indicates the chaos in the Haung chemical 

reactor [37]. 

This paper also derives new results of adaptive controller design for the chemical chaotic attractor 

using Lyapunov stability theory [38] and MATLAB plots are shown to illustrate the main results. Adaptive 

control method is a feedback control strategy which is very effective because it uses estimates of the unknown 

parameters of the system [39-42]. 
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Chemical Chaotic Reactor  

The well-stirred chemical reactor dynamics [37] consist of the following five reversible steps given 

below. 

3 51 2 4

1 2 3 4 5

1 5 2 3 52 ,  2 ,  ,  ,  2
k kk k k

k k k k k

A X X X Y Y A Y A X Z A A Z Z
    

           (1) 

In (1),  are initiators and  are products. The intermediates whose dynamics are 

followed are  and The corresponding non-dimensionalized dynamical evolution equations read as 

         (2) 

In (2),  are positive mole functions and  and  are positive parameters.  

To simplify the notations, we rename the constants and express the system (2) as 

          (3) 

The system (3) is chaotic when the system parameters are chosen as 

      (4) 

For numerical simulations, we take the initial conditions and  

The 3-D phase portrait of the chemical chaotic reactor is depicted in Fig. 1. 

 

Figure 1.The3-D phase portrait of the chemical chaotic reactor 

Computational Analysis of the Chemical Chaotic Attractor 

The Lyapunov exponents of the chemical chaotic attractor (3) have been obtained in MATLAB as 

       (5) 

Thus, the Lyapunov dimension of the chemical chaotic attractor (3) is deduced as 

        (6) 
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The chemical chaotic attractor has an equilibrium at  

The eigenvalues of the linearized system matrix of the attractor (3) at the origin are: 

         (7) 

Since there are two positive eigenvalues in the set (7), the origin is an unstable equilibrium of the 

chemical chaotic attractor (3). 

Adaptive Control Design of the Chemical Chaotic Attractor 

In this section, we use adaptive control method to design an adaptive feedback control law for globally 

stabilizing the chemical chaotic reactor with unknown parameters. 

Thus, we consider the controlled chemical chaotic attractor given by the dynamics 

        (8) 

In (8),  are the states and  are adaptive controls to be determined using estimates 

 of the unknown parameters  respectively. 

We consider the adaptive control law defined by 

       (9) 

In (9),  are estimates of the unknown parameters  respectively, and 

 are positive gain constants. 

Substituting (9) into (8), we obtain the closed-loop dynamical system 

       (10) 

Now, we define the parameter estimation errors as 

          (11) 

Using (11), we can simplify the closed-loop system (10) as 

         (12) 

Differentiating (11) with respect to  we get 
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          (13)  

We consider the quadratic Lyapunov function defined by 

      (14) 

Clearly,  is a positive definite function on  
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Differentiating  along the trajectories of (10) and (13), we obtain 
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In view of (15), we take the parameter update law as follows. 
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Theorem 1.The chemical chaotic attractor (8) with unknown system parameters is globally and exponentially 

stabilized for all initial conditions by the adaptive control law (9) and the parameter update law (16), where 

 are positive gain constants. 

Proof. We prove this result by Lyapunov stability theory. We consider the quadratic Lyapunov function  

defined in (14), which is positive definite on  

Substituting the parameter update law (16) into (15), we obtain 

         (17) 

By (17), it follows that  is a negative semi-definite function on  

By Barbalat’s lemma in Lyapunov stability theory, it follows that the states  exponentially 

converge to zero as  for all initial conditions.This completes the proof.  

Numerical Simulations 

We use classical fourth-order Runge-Kutta method in MATLAB with step-size for solving the 

systems of differential equations given by (8) and (16), when the adaptive control law (9) is applied. 

We take the gain constants as  We take the initial conditions of the 

chemical reactor (8) as  The parameter values are taken as in (4) for the 

chaotic case.  

Also, we take  

Fig. 2 shows the time-history of the exponential convergence of the controlled states  

 

Figure2.Time-history of the controlled states of the chemical chaotic reactor 
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Conclusions 

In this paper, new results have been derived for the analysis and adaptive control of a chemical chaotic 

attractor discovered by Haung (2005). After analyzing the qualitative properties of the chemical chaotic attractor 

discovered by Haung, we have designed an adaptive controller for the global exponential stabilization of the states 

of the chemical chaotic reactor. The main results have been proved using Lyapunov stability theory and numerical 

simulations have been illustrated using MATLAB. 
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