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Abstract: Tomatine provides defence against pathogenic fungi, bacteria, viruses and herbivores.
Therefore, evaluation the potential protective effects of dietary tomatine against gene expression
alterations, oxidative DNA damage and suppression of antioxidant enzyme induced by potassium
bromate- (KBrO3-) mediated oxidative stress in rats was studied. The effects of tomatine on gene
expression alterations and DNA damage induced by KBrO3 were evaluated by quantitative Real
Time-PCR and DNA laddering assay in liver cells. The effects of tomatine on the activities of
GPx in liver cells were determined in male rats treated with KBrO3. Endogenous antioxidant
status, namely, the activities GPx and the levels of GST-mRNA were significantly decreased in
the liver tissues of the KBrO3-treated rats, while the pretreatment of tomatine prevented the
decreases of these parameters induced by KBrO3 treatment. Moreover, the pretreatment of
tomatine was also able to prevent KBrO3-induced increases in the expression levels of Hsp70a
and CYP450 genes as  well  as  DAN fragmentation in the liver  tissues of  male rats. Conclusion:
The current results suggested that tomatine might act as a dietary protective agent with
antioxidant properties offering effective protection against gene expression changes, oxidative

   DNA damage in a concentration-dependent manner in vivo.
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Introduction

Cells that live in an oxygen-rich environment are inundated with various endogenous and exogenous
sources of reactive oxygen species (ROS) [1]. The most important target for ROS in the carcinogenesis process
is DNA [2, 3]. Irreparable DNA damage is involved in carcinogenesis, aging, and other degenerative diseases
[1, 4]. However, enzymatic and nonenzymatic systems, which preserve the oxidant/antioxidant status, are
disrupted during oxidative stress, a metabolic derangement due to an imbalance caused by excessive generation
of ROS or a diminished capacity of the antioxidant defense system. Dietary factors and natural antioxidants that
reduce the impact of ROS can protect DNA damage and thus reduce the risk of cancers [5, 6].

Potassium bromated (KBrO3) is commonly known to induce oxidative damage [7-9]. KBrO3 is a
widely used food additive, a water disinfection by-product, and a known nephrotoxic agent. Cellular
proliferation was enhanced in the kidney due to oxidative stress generated by KBrO3. It has also been reported
that KBrO3 increased the levels of 8-hydroxydeoxyguanosine (8- OHdG), an oxidative DNA adduct,
suggesting that it can indirectly induce DNA modifications by oxygen radicals that are involved in
carcinogenesis [6, 10].

Plants have played significant roles in maintaining human health and improving the quality of human
life for thousands of years [11, 12]. α−Tomatine is the major glycoalkaloid of tomato (Solanum lycopersicum
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L., syn.: Lycopersicon esculentum Mill.). The molecule is composed of an aglycone core, tomatidine, (22S,
25S)-5α-spirosolan-3β-ol, which is attached with its 3-OH group to the saccharide moiety called lycotetraose. In
plants, α−Tomatine may provide defence against pathogenic fungi, bacteria, viruses and herbivores [13]. This
effect corresponds with the content of the agent and changes throughout the lifespan of the tomato plant; e.g.
during tomato fruit maturation, the levels of α−Tomatine decrease considerably, which, among other factors,
brings about a reduction in the bitter flavor [14].

In mammals, a wide variety of health-promoting properties of α−Tomatine have been reported,
including the lowering of plasma concentrations of LDL and triacylglycerols [15] and cardiotonic [13] and
antiviral activity [16]. α−Tomatine may also contribute to the stimulation of antigen-specific humoral and
cellular immune response, including the augmentation of anticancer defence [17]. Friedman et al. [18] reported
the chemopreventive effect of α−Tomatine against liver and stomach cancer in rainbow trout (Oncorhynchus
mykiss Walb.). Lee et al. [19] showed the anti-proliferative effect of ΤΟΜ (c ~ 1 μg/L) against human colon and
liver cell lines, which was more powerful than that of some classical anticancer agents such as doxorubicin and
camptothecin.

On investigating the mechanism of action, it was found that ΤΟΜ affects important signaling pathways
responsible for the regulation of cell proliferation, differentiation, and migration [20, 21]. Shih et al. [21] found
ΤΟΜ (c  ≤ 2  μmol/L)  to  suppress  invasion  and  migration  in  a  human  lung  adenocarcinoma  cell  line.  It  also
inhibited the phosphorylation of Akt (protein kinase B), a serine-threonine kinase which regulates the function
of many cellular proteins involved in metastasis and the proliferation of cancer cells [22], and the
phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK 1,2). The ERK (extracellular regulated
kinase) pathway often plays a role in oncogenic transformation and in the regulation of metalloproteinases and
urokinase expression, i.e. of the enzymes which degrade the extracellular matrix and help cancer cells invade
tissues and metastasize [23, 24]. Shih et al. [21] detected lower activities of metalloproteinases and urokinase in
cells incubated with ΤΟΜ. ΤΟΜ also inhibited the activation of focal adhesion kinase, the phosphatidylinositol
3-kinase (PI3K)/Akt signal pathway, and NF-κB (nuclear factor kappa B) in cancer cells [25, 26]. In leukemic
cells, TOM induced apoptosis, which was caspase-independent and associated with the down-regulation of
survivin expression and the translocation of AIF (apoptosis inducing factor) into the nucleus [27]. In our recent
study on MOLT-4 cells, too, TOM induced caspase-independent cell death associated with an increase in p53
and in the mitochondrial protein PUMA. The inhibition of proliferation by alpha-tomatine was linked with an
increase in p21WAF1/ CIP1 level and activation of the checkpoint kinase 2 (Chk2) [28].

Therefore, evaluation the protective role of several concentrations of tomatine against KBrO3 induced
alteration in the gene expression and DNA fragmentaion in male rats was studied.

Material and Methods

1- Drugs and Reagents

Tomatine and Potassium bromate (KBrO3) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Trizol was bought from Invitrogen (Carlsbad, CA, USA). The reverse transcription and PCR kits were obtained
from Fermentas  (Glen  Burnie,  MD,  USA).  SYBR Green  Mix  was  purchased  from Stratagene  (La  Jolla,  CA,
USA).

2- Experimental Animals

Eighty adult albino male rats (100-120 g, purchased from the Animal House Colony, Giza, Egypt) were
maintained on standard laboratory diet (protein, 16.04%; fat, 3.63%; fiber, 4.1%; and metabolic energy, 0.012
MJ) and water ad libitum at the Animal House Laboratory, National Research Center, Dokki, Giza, Egypt.
After an acclimation period of 1 week, animals were divided into groups (10 mice/ group) and housed
individually in filter-top polycarbonate cages, housed in a temperature-controlled (23 ± 1°C) and artificially
illuminated (12 h dark/light cycle) room free from any source of chemical contamination. All animals received
humane care in compliance with the guidelines of the Animal Care and Use Committee of National Research
Center, Egypt.

3- Experimental Design

The  male  rats  were  randomly  allocated  in  10  groups  (n  =  10  per  group)  and  treated  for  8  week  as
follows: Group 1, control group: animals were treated intragastrically with solvent vehicle control (NaCl).
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Groups 2-4: animals were fed on tomatine, where tomatine over a range of doses (500, 1000, and 2000 ppm,
respectively) was added to the oil component of the diet and fed daily for 8 weeks [29] [Friedmanet al., 2007].
Group 5, animals were treated intraperitoneal (i.p.) injection of KBrO3 at a dose of 125mg/kg bodyweight [30]
[Ke et al., 2013]. Groups 6-8, animals were injected with KBrO3 as in group 5 and then fed on tomatine as in
groups 2-4, respectively.

4- Tissue Collection

At 24 h after the last injection, rats in each group were sacrificed by decapitation after anesthetized. The
liver tissues were collected on ice bath in order to investigate the total RNA (for the determination Hsp70a,
CYP450 and GST-mRNA) and GPx activity. Liver cells were collected to investigate the DNA (for
determination DNA fragmentation levels).

5- Gene Expression Analysis

5.1 Isolation of Total RNA

TRIzol® Reagent (Invitrogen, Germany) was used to extract total RNA from liver tissues of male rats
according to the manufacturer’s instructions with minor modifications. Isolated total RNA was treated with one
unit of RQ1 RNAse-free DNAse (Invitrogen, Germany) to digest DNA residues, re-suspended in DEPC-treated
water and quantified photospectrometrically at 260 nm. Purity of total RNA was assessed by the 260/280 nm
ratio which was between 1.8 and 2.1. Additionally, integrity was assured with ethidium bromide-stain analysis
of 28S and 18S bands by formaldehyde-containing agarose gel electrophoresis [31]. Aliquots were used
immediately for reverse transcription (RT), otherwise they were stored at -80°C.

5.2 Reverse Transcription (RT) Reaction

Complete Poly(A)+ RNA  isolated  from  liver  tissues  was  reverse  transcribed  into  cDNA  in  a  total
volume of 20 µl using RevertAidTM First Strand cDNA Synthesis Kit (Fermentas, Germany). An amount of
total RNA (5 µg) was used with a master mix. The master mix was consisted of 50 mM MgCl2, 10x RT buffer
(50 mM KCl; 10 mM Tris-HCl; pH 8.3), 10 mM of each dNTP, 50 µM oligo-dT primer, 20 IU ribonuclease
inhibitor (50 kDa recombinant enzyme to inhibit RNase activity) and 50 IU MuLV reverse transcriptase. The
mixture of each sample was centrifuged for 30 sec at 1000 g and transferred to the thermocycler. The RT
reaction was carried out at 25°C for 10 min, followed by 1 h at 42°C, and finished with a denaturation step at
99°C for 5 min [32]. Afterwards the reaction tubes containing RT preparations were flash-cooled in an ice
chamber until being used for cDNA amplification through quantitative Real Time- polymerase chain reaction
(qRT-PCR).

5.3 Quantitative Real Time- PCR (qRT-PCR)

An iQ5-BIO-RAD Cycler (Cepheid. USA) was used to determine the male rats cDNA copy number.
PCR  reactions  were  set  up  in  25 mL reaction mixtures containing 12.5 mL  1×  SYBR® Premix  Ex  TaqTM
(TaKaRa, Biotech. Co. Ltd.), 0.5 mL 0.2 mM sense  primer,  0.5 mL 0.2 mM antisense  primer,  6.5 mL distilled
water, and 5 mL of cDNA template. The reaction conditions consisted of denaturation at 95.0 °C for 3min, 30
cycles of denaturation at 95.0 °C for 15 sec, annealing at 60.0 °C for 30 sec and extension at 72.0 °C for 30 sec
and then final step consisted of several cycles at 60.0°C for 10 sec with an increase of 0.5°C until 95°C. Each
experiment included a distilled water control. The sequences of specific primer of the genes used [33, 34] and
product sizes are listed in (Table 1). At the end of each qRT-PCR a melting curve analysis was performed at
95.0°C to check the quality of the used primers.

Table 1. Primers sequences used for RT-PCR

Gene Primer sequence (5 –3 )a Annealing Tm (°C)

F: CGG GAG TTG TAG CGA TGA GA
Hsp70a

R: CTT CCT AAA TAG CAC TGA GCC ATA A
60

F: ATC AAG CAA GGG GAC GAG TTCYP450
R: GCT CGC TGA CAA TCT TTT GC

55
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CTG AAC TCA GGT AGT CCA GC-3'
GST

GGA GGT AGA AGT GCA CAA AG
60

F: TGG GGC AGT ATG GCT TGT ATGb-Actin
R: CTC TGG CAC CCT AAT CAC CTC T

55

a F: forward primer; R: reverse primer. Tm: temperature

5.4 Calculation of Gene Expression

First the amplification efficiency (Ef) was calculated from the slope of the standard curve using the
following formulae [35]:

Ef = 10-1/slope

Efficiency (%) = (Ef – 1) x 100
The relative quantification of the target to the reference was determined by using the
ΔCT method if E for the target (Hsp70a, CYP450 and GST) and the reference primers (β-Actin) are the same
[35]:
Ratio(reference/ target gene) = EfC

T
(reference) – C

T
(target)

6. DNA Fragmentation Analysis

Apoptotic DNA fragmentation was qualitatively analyzed by detecting the laddering pattern of nuclear
DNA as  described  according  to  Lu et al. [36]. Briefly, liver tissues were homogenized, washed in PBS, and
lysed in 0.5 ml of DNA extraction buffer (50 mM Tris–HCl, 10 mM EDTA. 0.5% Triton, and 100 μg/ml
proteinase K, pH 8.0) for overnight at 37°C. The lysate was then incubated with 100 μg/ml DNase free RNase
for 2h at 37°C, followed by three extractions of an equal volume of phenol/chloroform (1:1 v/v) and a
subsequent re-extraction with chloroform by centrifuging at 15,000 rpm for 5 min at 4°C. The extracted DNA
was precipitated in two volume of ice-cold 100% ethanol with 1/10 volume of 3 M sodium acetate, pH 5.2 at
−20°C for 1 h, followed by centrifuging at 15,000 rpm for 15 min at 4°C. After washing with 70% ethanol, the
DNA  pellet  was  air-dried  and  dissolved  in  10  mM  Tris–HCl/1  mM  EDTA,  pH  8.0.  The  DNA  was  then
electrophoresed on 1.5% agarose gel and stained with ethidium bromide in Tris-acetate/EDTA buffer  (TAE)
(pH 8.5, 2 mM EDTA, and 40 mM Tris–acetate). A 100-bp DNA ladder (Invitrogen, USA) was included as a
molecular size marker and DNA fragments were visualized and photographed by exposing the gels to
ultraviolet transillumination.

7. Determination of Gutathione Peroxidase (GPx) Activity

Glutathione peroxidase activity measurements were carried out by a procedure according to Miranda et
al. [37] [40]. The reaction mixture consisted of 8 mM H2O2, 40 mM guaiacol, 50 mM sodium acetate buffer, pH
5.5, and a suitable amount of the enzyme preparation. The change in absorbance at 470 nm due to guaiacol
oxidation was followed at 30 s intervals. One unit of GPx activity was defined as the amount of enzyme which
increases the O.D. 1.0/min under standard assay conditions.

8. Statistical Analysis

All results were expressed as mean ± SE of the mean. Data were analyzed by one way analysis of
variance (ANOVA) using the Statistical Package for the Social Sciences (SPSS) program, version 11 followed
by least significant difference (LSD) to compare significance between groups. Difference was considered
significant when P < 0.05.

Results

Effect of tomatine on the gene expression changes induced by KBrO3

Messenger RNA expression of stress related genes (Hsp70a and CYP450) and antioxidant enzyme gene
(GST) was quantified by real-time RT-PCR. In groups of rats fed on tomatine fractions (tomatine500,
tomatine1000 and tomatine 2000 ppm) Hsp70a and CYP450 and GST mRNA expressions elevated similar
expression values to control group (Figure 1-3).
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Figure 1: The alterations of Hsp70-mRNA in liver tissues of male rats after KBrO3 exposure and/or
tomatine treatment. Data are presented as mean ± SEM. a,b,cMean values within tissue with unlike
superscript letters were significantly different (P<0.05, Scheffé-Test).

Figure 2: The alterations of CYP450-mRNA in liver tissues of male rats after KBrO3 exposure and/or
tomatine treatment. Data are presented as mean ± SEM. a,b,cMean values within tissue with unlike
superscript letters were significantly different (P<0.05, Scheffé-Test).

However, KBrO3 exposure increased the mRNA expression values of Hsp70a and CYP450 to 209 and
233%% of control, respectively (Figure 1 and 2). In contrast, comparing with KBrO3 alone group, expression
values of Hsp70a gene decreased by 74, 59 and 49% in tomatine500+KBrO3, tomatine1000+KBrO3, and
tomatine 2000+KBrO3 groups, respectively (Fig. 1). In the same trend, expression values of CYP450 gene
decreased by 77, 65 and 46% in tomatine500+KBrO3, tomatine1000+KBrO3, and tomatine 2000+KBrO3
groups, respectively compared with KBrO3 alone group (Fig. 2)

On the other hand, KBrO3 exposure decreased the mRNA expression value of GST to 29% of control
group (Figure 3). However, expression values of GST mRNA increased by 212, 242 and 269% in
tomatine500+KBrO3, tomatine1000+KBrO3, and tomatine2000+KBrO3 groups, respectively compared with
KBrO3 alone group (Fig.  3).  So,  these results  revealed that  the best  extract  in  reducing the negative effect  of
KBrO3 on the expression changes is tomatine2000.
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Figure 2: The alterations of GST-mRNA in liver tissues of male rats after KBrO3 exposure and/or
tomatine treatment. Data are presented as mean ± SEM. a,b,cMean values within tissue with unlike
superscript letters were significantly different (P<0.05, Scheffé-Test).

Effects of tomatine on DNA fragmentation induced by KBrO3

Assessment of DNA fragmentation in liver tissues of male rats' genome following KBrO3and/or
tomatine treatment as a surrogate for oxidative stress induced damage is summarized in Figure 4.

The results showed that the DNA fragmentation following tomatine fractions (500, 1000 and 2000
ppm) were relatively similar to that of the control group.

However, the DNA fragmentation increased in the form of several DNA bands following KBrO3
treatment in comparison to that of the control group (Fig. 4). In contrary, the DNA fragmentation decreased
following tomatine fractions companied with KBrO3 (tomatine500+KBrO3, tomatine1000+KBrO3,
tomatine2000+KBrO3) compared with KBrO3 alone (Fig. 4).

Figure  4:  Comparison  of  DNA fragmentation  profiles  of  different  male  rat  genomic  DNA treated  with
KBrO3 and/or tomatine. M: DNA marker. Lane 1 represents PCR products of untreated control
samples; lanes 2-4 represent rats fed on tomatine; lane 5 represents rats treated with KBrO3; lanes 6-8
represent rats fed on tomatine  plus KBrO3.
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Effects of tomatine on GPx levels after KBrO3 Exposure

Table 2 shows the suppression effect of tomatine fractions on KBrO3-induced alteration in the
antioxidant enzyme. Comparing with the control group, GPx activity levels were relatively similar with
tomatine fractions (500, 1000 and 2000 ppm) treatment. However, the activity level of GPx decreased
significantly compared with KBrO3 group. When compared with the KBrO3 alone group, GPx concentration
elevated 1.7, 2.1 and 2.4-fold significantly in tomatine500+KBrO3, tomatine1000+KBrO3 and
tomatine2000+KBrO3 groups, respectively (Table 2).

Table 2. The amount of glutathione peroxidase activity in rats exposed to KBrO3 and/or tomatine

Treatment Glutathione peroxidase activity
(U/mg tissues/min)

Control 6.2±0.06
Tomatine500 5.7±0.05
Tomatine1000 5.9±0.04
Tomatine2000 6.5±0.06
KBrO3 2.2±0.03**

Tomatine500+KBrO3 3.8±0.04*

Tomatine1000+KBrO3 4.6±0.05*

Tomatine2000+KBrO3 5.2±0.06
Data are presented as mean ± SEM. Values marked with an asterisk (*) are significantly different (P < 0.05),
(**) are significantly different (P < 0.01).

Discussion

The current study showed increase of the expression alterations of stress related genes (Hsp70a and
CYP450) and decrease of antioxidant enzyme gene (GST), DNA fragmentation and decreased activities of
enzymatic antioxidant GPx in circulation, liver of KBrO3-treated rats. ROS generated in tissues are normally
scavenged by enzymatic and non-enzymatic antioxidants [38, 39]. Antioxidant defense system protects the
aerobic organism from the deleterious effects of reactive oxygen metabolites [40-42].

Glutathione is a crucial component of the antioxidant defense mechanism and it functions as a direct
reactive free the highest content of GSH, which is transferred to kidney and liver by distinct GSH transport
system  [43,  44].  The  decreased  levels  of  GSH  in  circulation  and  tissues  in  KBrO3-treated  rats  may  due  to
enhanced utilization during detoxification of KBrO3. GPx and CAT, which act as preventive antioxidants and
SOD, a chain-breaking antioxidant, play important roles in protection against the deleterious effects of lipid
peroxidation [45]. Decreases in the activities of SOD, CAT and GPx in plasma, liver and kidney of KBrO3-
treated rats may due to the decreased synthesis of enzymes or oxidative inactivation of the enzyme proteins. In
the present study, increased DNA fragmentation and expression alterations associated with decreased
antioxidant status in KBrO3-treated rats could therefore give rise to insufficient antioxidant potential.

This study demonstrated that tomatine protected against changes of the gene expression coincided with
DNA damage and to varying degrees reversed the damages caused by oxidative stress via its antioxidant
activities. These findings support the hypothesis that tomatine exerted a protective effect in vivo.

For our knowledge this is the first report on the anti-genotoxicity effects of tomatine in vivo. The results
revealed that the expression of Hsp70a and CYP450 and GST mRNA in rats fed on several concentrations of
tomatine fractions (500, 1000 and 2000 ppm) elevated similar expression values to control group. In addition,
tomatine prevented the oxidative stress of KBrO3 induced increase in expression of stress related genes
(Hsp70a and CYP450) and decrease of antioxidant enzyme gene (GST).

The antioxidant effects of tomatine may be due to different causes: firstly, flavonoid’s high diffusion
into the membranes [46] allowed it to scavenge oxyradicals at several sites throughout the lipid bilayer;
secondly, its pentahydroxyflavone structure allowed it to chelate metal ions via the orthodihydroxy  phenolic
structure, thereby scavenging lipid alkoxyl and peroxyl radicals [47, 48]. In spite of the free radical scavenging
activities, flavanoid glycosides and phenols in tomatine might be also involved in the indirect induction of
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detoxifying genes [49], which might promote detoxification of KBrO3 and decrease their toxicity. In vivo
studies have shown that flavanoid glycosides inhibited Fe2+-induced lipid peroxidation in the rat liver [50]. It is
suggested that the lipid peroxidative indices were probably attenuated by the chainbreaking action of flavanoid
in the free radical process of the oxidation of membrane lipids.

Our results also showed that the liver was the major organ with the higher content of DNA damage
after KBrO3 treatment, suggesting that the liver is the main target organ of KBrO3-induced DNA oxidation.
DNA damage was significantly decreased after the treatment of tomatine, which may be attributed to the
antioxidant property of phenols in tomatine, as phenols are known to bind DNA at sites that would normally
react with the active metabolites of carcinogen during carcinogen-DNA binding, a crucial step for initiation of
carcinogenesis [51–53]. Alternatively, when the phenols bind to DNA, their molecules might be positioned in
such  a  way  so  as  to  effectively  scavenge  reactive  intermediates  that  approach  the  critical  sites  on  DNA,  or
phenols may directly interact with the ultimate reactive metabolites of carcinogen by donating their electrons
and rendering it inactive [54]. Dok-Go et al. demonstrated phenolsact in many cell-free experimental systems to
scavenge reactive oxygen radicals and reduce oxidativeDNA damage [55].

In conclusion, our data demonstrated that tomatine protected against KBrO3 toxicity by decreasing
oxidant status resulting in decreasing of gene expression alterations and DNA damage and increasing the
antioxidant status, indicating that tomatine possesses a spectrum of antioxidant and DNA-protective properties.
However, further investigations are necessary to elucidate the precise mechanisms of protection of tomatine
against KBrO3 toxicity, and the potential effects of tomatine against other carcinogens should be explored prior
to evaluating as a chemopreventive agent against carcinogenesis.
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