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Abstract: Chaos theory has a manifold variety of applications in science and engineering.  The
frequent and irregular reversals of the earth’s magnetic field has motivated a number of research
studies involving electrical currents within the earth’s molten core. One of the first such
nonlinear models that exhibited the frequent and irregular reversals of the earth’s magnetic field
was Rikitake’s two-disk dynamo system (1958). Rikitake two-disk dynamo system is a chaotic
system that predated the pioneering work of Lorenz (1963). In this paper, we describe the
dynamic equations and qualitative properties of the Rikitae two-disk dynamo chaotic system. We
also derive new results for the global anti-synchronization of the Rikitake two-disk dynamo
chaotic systems. MATLAB plots have been depicted to illustrate the phase portraits of the
Rikitake two-disk dynamo chaotic attractor and the global anti-synchronization of the Rikitake
two-disk dynamo chaotic systems via adaptive control method.
Keywords: Chaos, chaotic systems, anti-synchronization, earth’s magnetic field, electrical
currents, Rikitake dynamo system, two-disk model, nonlinear model, adaptive control,
stability.

1. Introduction

A dynamical system is called chaotic if it satisfies the three properties: boundedness, infinite
recurrence and sensitive dependence on initial conditions [1-2]. Chaos theory investigates the qualitative and
numerical study of unstable aperiodic behaviour in deterministic nonlinear dynamical systems.

In 1963, Lorenz [3] discovered a 3-D chaotic system when he was studying a 3-D weather model for
atmospheric convection. After a decade, Rössler [4] discovered a 3-D chaotic system, which was constructed
during the study of a chemical reaction. These classical chaotic systems paved the way to the discovery of
many 3-D chaotic systems such as Arneodo system [5], Sprott systems [6], Chen system [7], Lü-Chen system
[8], Cai system [9], Tigan system [10], etc.  Many new chaotic systems have been also discovered in the recent
years like Sundarapandian systems [11, 12], Vaidyanathan systems [13-43], Pehlivan system [44], Pham
system [45], etc.

Recently, there is significant result in the chaos literature in the synchronization of physical and
chemical systems. A pair of systems called master and slave systems are considered for the synchronization
process and the design goal of anti-synchronization is to device a feedback mechanism so that the state
trajectories of the master and slave systems are equal in magnitude and opposite in sign asymptotically.
Because of the butterfly effect which causes exponential divergence of two trajectories of the system starting
from nearby initial conditions, the anti-synchronization of chaotic systems is seemingly a challenging research
problem.

In control theory, active control method is used when the parameters are available for measurement [46-
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65]. Adaptive control is a popular control technique used for stabilizing systems when the system parameters are
unknown [66-80]. There are also other popular methods available for control and synchronization of systems such
as backstepping control method [81-87], sliding mode control method [88-100], etc.

Recently, chaos theory is found to have important applications in several areas such as chemistry [101-
114], biology [115-138], memristors [129-141], electrical circuits [142], etc.

The frequent and irregular reversals of the earth’s magnetic field has motivated a number of research
studies involving electrical currents within the earth’s molten core. One of the first such nonlinear models that
exhibited the frequent and irregular reversals of the earth’s magnetic field was Rikitake two-disk dynamo system
[143]. Rikitake two-disk dynamo system (1958) is a classical chaotic system that predated the pioneering work of
Lorenz (1963).

First, this research paper details the dynamic equations of the Rikitake two-disk dynamo system [143]
and discusses its qualitative properties.

This paper also derives new results for the global anti-synchronization of the Rikitake two-disk
dynamo system via adaptive control method. MATLAB simulation plots are shown to depict the phase portraits
and global anti-synchronization of the Rikitake two-disk dynamo systems.

2. Rikitake Two-Disk Dynamo Chaotic System
Rikitake two-disk dynamo chaotic system [143] is governed by the system model
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where 1 2 3, ,x x x are the states and ,a b are constant positive parameters. The parameter a represents the
resistive dissipation and the parameter b represents the difference in the angular velocities of the two disks.

We note that the Rikitake two-disk dynamo chaotic system (1) has the same number of terms as the Lorenz
chaotic system, but with one additional nonlinearity.

The Rikitake two-disk dynamo system (1) is chaotic when the system parameters are chosen as

1,   1a b= = (2)

For numerical simulations, we take the initial conditions

1 2 3(0) 1.0,  (0) 0,  (0) 0.8x x x= = = (3)

Figure 1 shows the 3-D phase portrait of the Rikitake two-disk dynamo system (1). Figures 2-4 show the 2-D
projections of the Rikitake two-disk dynamo system on the 1 2( , ),x x 2 3( , )x x and 1 3( , )x x planes, respectively.

Figure 1. The 3-D phase portrait of the Rikitake two-disk dynamo system
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Figure 2. The 2-D projection of the Rikitake two-disk dynamo system on the 1 2( , )x x plane

Figure 3. The 2-D projection of the Rikitake two-disk dynamo system on the 2 3( , )x x plane

Figure 4. The 2-D projection of the Rikitake two-disk dynamo system on the 1 3( , )x x  plane

The Lyapunov exponents of the Rikitake two-disk dynamo system (1) are numerically found as

1 2 30.12749,  0,  2.12704L L L= = = - (4)
From the LE spectrum (4), it is immediate that the Rikitake two-disk dynamo system (1) is a chaotic system and
the Maximal Lyapunov Exponent (MLE) of the Rikitake dynamo system (1) is 1 0.12749.L =
Since the sum of the Lyapunov exponents in (4) is negative, it follows that the Rikitake two-disk dynamo system
(1) is dissipative.
Also, the Lyapunov dimension of the Rikitake two-disk dynamo system (1) is derived as
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3. Global Anti-Synchronization of the Rikitake Two-Disk Dynamo Chaotic Systems via
Adaptive Control

In this section, we use adaptive control method to achieve global anti-synchronization of the identical
states of the Rikitake two-disk dynamo chaotic systems with unknown parameters. We use Lyapunov stability
theory [144] to prove the main adaptive control result derived in this section.

As the master system, we consider the Rikitake two-disk dynamo dynamics given by
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In ((6), 1 2 3, ,x x x are the states of the Rikitake two-disk dynamo system and ,a b are unknown parameters.
As the slave system, we consider the controlled Rikitake two-disk dynamo dynamics given by
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In (7), 1 2 3, ,y y y are the states of the controlled Rikitake two-disk dynamo system.
The anti-synchronization errors are defined by
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The anti-synchronization error dynamics is obtained as
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We consider the adaptive controller defined by
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where 1 2 3, ,k k k are positive gain constants.
Substituting (10) into (9), we get the closed-loop error dynamics as
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We define the parameter estimation errors as
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Using (12), the closed-loop system (11) can be simplified as
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Differentiating (12) with respect to time, we get
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Next, we consider the candidate Lyapunov function defined by

( )2 2 2 2 2
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Differentiating (15) along the trajectories of (13) and (14), we get the following dynamics
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In view of (15), we take the following parameter update law:
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Next, we state and prove the main result of this section.
Theorem 1. The adaptive control law (10) and the parameter update law (17) achieve global and exponential
anti-synchronization of the identical 3-D Rikitake two-disk dynamo chaotic systems defined by (6) and (7),
where 1 2 3, ,k k k are positive gain constants.
Proof. The result is proved using Lyapunov stability theory [144].
The quadratic Lyapunov function V defined by (15) is positive definite on 5.R
Substituting the parameter update law (17) into (16), we get the time derivative of V as

2 2 2
1 1 2 2 3 3 ,V k e k e k e= - - -& (18)

which is negative semi-definite on 5.R
Thus, by Barbalat’s lemma in Lyapunov stability theory [144], it follows that the closed-loop error dynamics
(13) is globally exponentially stable.
Hence, it is immediate that the identical 3-D Rikitake two-disk dynamo chaotic systems (6) and (7) are globally
and exponentially anti-synchronized.
This completes the proof. n

4. Numerical Simulations

 We use the classical fourth-order Runge-Kutta method with step-size 810h -= to solve the system of differential
equations (6) and (7), when the adaptive control law (10) is implemented.
We take the parameter values of the Rikitake two-disk dynamo chaotic systems as in the chaotic case, viz.

1,   1a b= = (19)
We take the gain constants as

1 2 38,   8,    8k k k= = = (20)
We take the initial values of the Rikitake dynamo system (6) as

1 2 3(0) 21.2,  (0) 5.6,  (0) 12.3x x x= = = (21)
We take the initial values of the Rikitake dynamo system (7) as

1 2 3(0) 9.7,  (0) 2.5,  (0) 4.2y y y= = = (22)
We take the initial values of the parameter estimates as

ˆˆ(0) 7.4,  (0) 5.3a b= = (23)

Figures 5-7 show the anti-synchronization of the Rikitake dynamo chaotic systems (6) and (7).

Figure 8 shows the time-history of the anti-synchronization errors 1 2 3, , .e e e
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Figure 5. Anti-synchronization of the states 1( )x t and 1( )y t

Figure 6. Anti-synchronization of the states 2 ( )x t and 2 ( )y t

Figure 7.  Anti-synchronization of the states 3( )x t and 3( )y t
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Figure 8. Time-history of the anti-synchronization errors 1 2 3( ), ( ), ( )e t e t e t

5. Conclusions

In this paper, we described the dynamic equations and qualitative properties of the Rikitae two-disk
dynamo chaotic system. We also derived new results for the global anti-synchronization of the Rikitake two-disk
dynamo chaotic systems. MATLAB plots were depicted to illustrate the phase portraits of the Rikitake two-disk
dynamo chaotic attractor and the global anti-synchronization of the Rikitake two-disk dynamo chaotic systems via
adaptive control method.
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