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Abstract: Chaos theory has a manifold variety of applications in science and engineering. This
paper details the qualitative properties of a chemical chaotic attractor discovered by Huang
(2005). This paper gives a summary description of the chemical reactor dynamics and the chaos
dynamic analysis. Next, new results are obtained for the global chaos synchronization of
identical chemical chaotic reactors using a novel sliding mode control method. MATLAB plots
have been shown to illustrate the phase portraits of the chemical chaotic attractor and the global
chaos synchronization of identical chemical chaotic attractors.
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1. Introduction

Chaos theory investigates the qualitative and numerical study of unstable aperiodic behaviour in
deterministic nonlinear dynamical systems. A dynamical system is called chaotic if it satisfies the three
properties: boundedness, infinite recurrence and sensitive dependence on initial conditions [1-2].

In 1963, Lorenz [3] discovered a 3-D chaotic system when he was studying a 3-D weather model for
atmospheric convection. After a decade, Rossler [4] discovered a 3-D chaotic system, which was constructed
during the study of a chemical reaction. These classical chaotic systems paved the way to the discovery of many
3-D chaotic systems such as Arneodo system [5], Sprott systems [6], Chen system [7], Lii-Chen system [8], Cai
system [9], Tigan system [10], etc. Many new chaotic systems have been also discovered in the recent years
like Sundarapandian systems [11, 12], Vaidyanathan systems [13-42], Pehlivan system [43], Pham system [44],
etc.

Recently, there is significant result in the chaos literature in the synchronization of physical and
chemical systems. A pair of systems called master and slave systems are considered for the synchronization
process and the design goal is to device a feedback mechanism so that the trajectories of the slave system
asymptotically track the trajectories of the master system. Because of the butterfly effect which causes
exponential divergence of two trajectories of the system starting from nearby initial conditions, the
synchronization of chaotic systems is seemingly a challenging research problem.

In control theory, active control method is used when the parameters are available for measurement [45-
64]. Adaptive control is a popular control technique used for stabilizing systems when the system parameters
are unknown [65-79]. There are also other popular methods available for control and synchronization of
systems such as backstepping control method [80-86], sliding mode control method [87-98], etc.

Recently, chaos theory is found to have important applications in several areas such as chemistry [99-
104], biology [105-112], memristors [113-115], electrical circuits [116], etc.

This paper investigates first the qualitative properties of a chemical chaotic reactor model discovered by
Huang in 2005 [117]. Huang derived the chemical reactor model by considering reactor dynamics with five
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steps (2 reversible and 3 non-reversible). This paper also derives new results for the global chaos
synchronization of chemical chaotic attractors using Lyapunov stability theory using novel sliding mode control
method. MATLAB plots are shown to illustrate the phase portraits and global chaos synchronization of the
chemical chaotic reactor.

2. Huang’s Chemical Chaotic Reactor

The well-stirred chemical reactor dynamics of Huang and Yang [117] consist of the following five steps
given below.

A+ X]f:WzX (1a)
X+Y—L 527 (1b)
A +Y 54 (1¢)
X+Z—tsy (1d)
4, +Z]f<:>522 (1¢)

-5

Equations (1a) and (le) indicate reversible steps, while equations (1b), (1c) and (1d) indicate non-
reversible steps of the Huang chemical reactor [116]. In (1), A, A4,, A;are initiators and A,, 4, are products.

The intermediates whose dynamics are followed are X,Y and Z.

Assuming an ideal mixture and a well-stirred reactor, the macroscopic rate equations for the Huang’s chemical
reactor can be written in non-dimensionalized form as

X =ax—k x"—xy—xz
y=xy—asy 2)

. 2
Z=a,z—-xz—k  z

In (2), x,y,zare the mole fractions of X,Y and Z. Also, the rate constants k,k,and k,are incorporated in

the parameters a,,a,and a;.
To simplify the notations, we rename the constants and express the chemical reactor system (2) as

X =ax—px’ —xy—xz
y=xy—cy (3)

t=bz—xz—qz’°
The system (3) is chaotic when the system parameters are chosen as
a=30, b =16.5, ¢c=10, p =0.5, g =0.5 €))
For numerical simulations, we take the initial conditions

x(0)=1.8, y(0)=2.5, z(0)=0.6 (5)
The 3-D phase portrait of the chemical chaotic reactor is depicted in Figure 1.

The 2-D projections of the chemical chaotic reactor on the (x,)), (v,z) and (x,z) planes are depicted in
Figures 2-4.
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Figure 2. The 2-D projection of the chemical chaotic attractor on the (x,y) plane
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Figure 3. The 2-D projection of the chemical chaotic attractor on the (y,z) plane



Sundarapandian Vaidyanathan /Int.J. ChemTech Res. 2015,8(7),pp 209-221. 212

Figure 4. The 2-D projection of the chemical chaotic attractor on the (x,z) plane

3. Computational Analysis of the Chemical Chaotic Attractor

The Lyapunov exponents of the Huang’s chemical chaotic attractor (3) are derived in MATLAB as
L =64001, L, 0, L, -11.8762 (6)
Thus, the Lyapunov dimension of the chemical chaotic attractor (3) is deduced as

L+L,

D, =2+
' | Ls |

=2.0337 (7)

The chemical chaotic attractor has an equilibrium at (x, y,z) = (0,0,0).
The eigenvalues of the linearized system matrix of the chemical reactor (3) at the origin are:

A =85, 4, 30,4, -10 ®)
Thus, the origin is a saddle-point equilibrium, which is unstable.

4. Global Chaos Synchronization of Chemical Chaotic Attractors via Sliding Mode Control

In this section, we use novel sliding mode control [97] to design a feedback control law for globally
synchronizing the trajectories of identical chemical chaotic reactors.

Sliding mode control (SMC) is a nonlinear control technique with the useful properties of accuracy,
robustness, easy tuning and implementation. Sliding mode control systems are designed to drive the system states
onto a particular surface in the state space, called sliding surface. Once the sliding surface is reached, sliding
mode control keeps the states on the close neighbourhood of the sliding surface. Hence the sliding mode control
is a two part controller design. The first part involves the design of a sliding surface so that the sliding motion
satisfies the system design specifications. The second is concerned with the selection of a control law that will
make the switching surface attractive to the system state. A major advantage of the sliding mode control method
is that the closed loop response becomes totally insensitive to some particular uncertainties. This principle
extends to model parameter uncertainties, disturbance and non-linearity that are bounded. From a practical point
of view, sliding mode control (SMC) is very useful controlling nonlinear processes which are subject to external
disturbances and heavy model uncertainties.
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As the master system, we consider the chemical reactor dynamics

. 2
Xy =ax, — px, — X — X2
M=)~y )
z =bz, —xz —qz

In (9), x,,y,,z, are the states of the master system.

Also, we consider the slave system as the chemical chaotic attractor given by the dynamics

2
X, =aX, = pX; =X, ), —X,Z, +U,
Yy =X, =y, tu, (10)

z, =bz,—x,z, —qz; +u,
In (10), x,,,,z, are the states of the slave systemand u ,u ,u,_ are sliding controls to be determined.

The global chaos synchronization error is defined by

€ =X X
€, =N=N (11
€. =274

The error dynamics is obtained as

) 2 2
e, =ae, —p(X; =X ) =X, 0, + XV, = X,2, + Xz, + U,
e, =—ce, +Xx,y, — Xy +u, (12)

. 2 2
é. =be —x,z,+x,z, —q(z2 -z, )+u2

z

In this paper, we use Vaidyanathan’s theorem [97] to devise a novel sliding mode controller to drive the
synchronization error to zero asymptotically.

We take the parameter values as in the chaotic case

First, we write the error system (12) in matrix form as

e=Ae+y(x,y)+u (13)
where
e, 0 30 0 0 u,
e=|e, ,A=10 — 0|={0 -10 O |,u= u, (14)
e, 0 b 0 0 165 u,
and

_p(xzz _xlz)_xzyz X0 — X2, X2
v(x,y)= XYy = X)) (15)

2 2
—X,Z, + X,2, —q(22 -z )



Sundarapandian Vaidyanathan /Int.J. ChemTech Res. 2015,8(7),pp 209-221. 214
We find B € R’ so that (A4, B)is completely controllable. A simple choice of B is

1
B=|1]|. (16)

1

Thus, we set the nonlinear feedback control u as
U:_W(an’)+BV (17)
where Vv is the sliding control, which is determined as follows.

The sliding variable is selected as

s=Ce {:2.1 0 —2.0]822.161—263 (18)
With the choice of C = [2.1 0 —2.0] , the eigenvalues of the matrix E =[/ — B(CB) ' C]4 are given by

eig(E) ={—10, —253.5, 0}. (19)
This shows that the dynamics along the sliding manifold is globally asymptotically stable.

Next, we take the sliding constants as k = 6and g =0.2. Then the novel sliding control vis obtained by the
Vaidyanathan’s theorem [94] as

v(t) =~(CB)"' [ C(kI + A)e + qs” sgn(s) | (20)
A simplification gives
v(t) = -756e, +450e, —2s” sgn(s) (21)

As an application of Vaidyanathan’s theorem [97], we obtain the following result.

Theorem 1. The identical chemical chaotic attractors (9) and (10) with unknown system parameters are globally
and asymptotically synchronized for all initial conditions by the sliding control law (17), where vis defined by

(21), B is defined by (16) and y(x, y)is defined by (15). ®
5. Numerical Simulations

We use classical fourth-order Runge-Kutta method in MATLAB with step-size /4 =10"" for solving the systems
of differential equations given by (9) and (10), when the sliding control law (17) is applied.

We take the sliding constants as k=6 and g =0.2.
We take the initial conditions of the chemical reactor (9) as

x,(0)=6.3, »(0)=8.1, z(0)=2.7 (22)
We take the initial conditions of the chemical reactor (10) as

x,(0)=3.5, y,(0)=4.9, z,(0)=9.2 (23)

The parameter values of the chemical reactor are taken as in the chaotic case, viz.
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a=30, b =16.5, ¢c=10, p =0.5, g =0.5 (24)
Figures 5-7 show the complete chaos synchronization of the chemical chaotic reactors (9) and (10).

Figure 8 shows the time-history of the chaos synchronization errors e ,e ,e..
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Figure 8. Time-history of the chaos synchronization errors e (7),e (7),e.(?)

6.

Conclusions

In this paper, new results have been derived for the dynamic analysis and global chaos synchronization of a

chemical chaotic attractor discovered by Huang and Yang (2005) via novel sliding mode control method. First, the
paper discussed the qualitative properties, Lyapunov exponents, stability of equilibrium point at the origin and
phase portraits of the chemical chaotic attractor discovered by Huang. Then this paper derived new results for the
global synchronization of the states of the identical chemical chaotic reactors via novel sliding mode controller
(SMC). We have given MATLAB simulations to illustrate all the main results presented in this work.
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