

ChemTech

International Journal of ChemTech Research

CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.8, No.2, pp 524-527, 2015

Spectroscopic Studies on Alumino Alkali Zirconia Silicate Glasses Mixed with Tiatanium ions for Optoelectronic Device Application

Ch. Srinivasa Rao and M.C. Rao*

Department of Physics, Andhra Loyola College, Vijayawada - 520008, A.P., India

Abstract: $Li_2O-Al_2O_3-ZrO_2-SiO_2$ glasses mixed with different concentrations of TiO₂ have been synthesized by melt quenching method. The properties like optical absorption, ESR and photoluminescence were investigated. The optical absorption and ESR studies indicated that a proportion of titanium ions exist in the Ti³⁺ state in addition to the Ti⁴⁺state in these samples. Photoluminescence spectra exhibit a broad emission band in the visible region. The luminescence band is attributed to radiative recombination of self-trapped excitons localized on substitutionally positioned octahedral Ti⁴⁺ ions. The luminescence efficiency is found to increase with the content of TiO₂.

Keywords: Li₂O–Al₂O₃–ZrO₂–SiO₂ glasses, melt quenching, optical absorption, ESR and photoluminescence.

Introduction:

Alumino alkali silicate glasses are well known for the variety of their applications, which include low cost-optical connectors, actinide immobilization, implantlogy medical prostheses), and dielectric and sealant materials for solid oxide fuel cells [1]. Addition of zirconia (ZrO_2) gives good mechanical properties in terms of hardness. For certain specific concentration ratios of ZrO_2/Al_2O_3 , the material possess a negative thermal expansion (NTE), which is highly useful for extending the range of applications of these materials. The presence of ZrO_2 in alumino alkali silicate glasses is expected to increase the electrical resistivity and chemical inertness and to improve the transparency over a wide range of wavelengths (300 nm to $8 \cdot m$). The inclusion of ZrO_2 in alumino alkali silicate glasses causes a substantial increase in the refractive index, a decrease in the cut-off wavelength for absorption and a reduction in photochromism. Such changes in physical properties make these glasses a good host for rare-earth ions, which induce luminescence emission with high efficiency. In view of these qualities, ZrO_2 containing glasses find a variety of applications, such as thermal barrier coatings, optical filters, laser mirrors and gate dielectrics in microelectronics [2].

The range of applications of aluminio alkali zirconium silicate glasses can further be widened by mixing a small quantity of TiO_2 to these high transmitting glasses. The TiO_2 containing glasses are being used in optoelectronic devices, integrated circuits and low-loss optical waveguides [3]. The objective of the present presentation is to obtain a comprehensive understanding on the topology and valence states of titanium ions in the aluminio alkali zirconia silicate glasses mixed with tiatanium ions as a function of concentration of TiO_2 through a systematic study of spectroscopic properties

Experimental:

The glass samples are prepared by melt quenching method and optical polished. The density of the glasses was determined by the principle of Archimedes' using o-xylene as the buoyant liquid. The mass of the samples was measured to an accuracy of 0.0001 g using Ohaus digital balance Model AR2140 for evaluating

the density. The optical absorption spectra of the glasses were recorded to a resolution of 1 nm at room temperature in the spectral wavelength range covering 300–1000 nm using JASCO Model V-670 UV–vis–NIR spectrophotometer. The ESR spectra of finely ground powders of the samples were recorded at room temperature with an E11Z Varian X-band ($\cdot \cdot = 9.5$ GHz) ESR spectrometer. The luminescence spectra of the samples were recorded at room temperature with a Photon Technology International fluorescence spectrophotometer.

Results and Discussion:

The table represents the physical parameters of Li₂O–Al₂O₃–ZrO₂–SiO₂: TiO₂ glasses.

Table: The physical parameters of Li₂O-Al₂O₃-ZrO₂-SiO₂: TiO₂ glasses

Sample	Density (g/cm ³)	Avg. mol. wt.	Dopant ion conc. N_i (×10 ²⁰ ions/cm ³)	Interionic distance (Å)	Polaron radius Å	Molar volume cm ³ /mol	Refractive index
To	2.5024	58,37	=	1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 -	12	23,33	1.784
TI	2.5265	58.87	2.62	15.62	6.29	23.30	1.785
T_2	2.5491	59.36	5.20	12.43	5.01	23.29	1.786
T ₃	2.5712	59.86	7.79	10.86	4.38	23.28	1.786
T_4	2.5935	60.36	10.35	9.88	3.98	23.27	1.787
T ₅	2.6191	60.86	12.94	9.18	3.70	23.24	1.788

Fig. 1 presents optical absorption spectra for the $Li_2O-Al_2O_3-ZrO_2-SiO_2$: TiO₂ glass samples recorded at room temperature in the wavelength region 300–900 nm. The absorption edge, observed at 376.6 nm for the glass sample T₂, exhibited a blue shift with increasing TiO₂ concentration. Additionally, the spectrum of glass T₂ exhibited two clearly resolved absorption bands at 544 and 700 nm. As the concentration of TiO₂ is increased further, the half width and intensity of these two bands was observed to decrease with a slight shift in the peak positions towards lower wavelength.

Fig. 1 Optical absorption spectra for the Li₂O-Al₂O₃-ZrO₂-SiO₂: TiO₂ glasses

ESR spectra of $Li_2O_-Al_2O_3$ -ZrO₂-SiO₂ glasses doped with different concentrations of TiO₂ recorded at room temperature are shown in Fig. 2. The spectrum of glass T₂ sample consists of an intense asymmetric spectral line centered at about g =1.990. The half width and the intensity of this signal exhibited a gradual decrease with the concentration of TiO₂.

Fig. 2 ESR spectra of Li₂O-Al₂O₃-ZrO₂-SiO₂ glasses doped with different concentrations of TiO₂ recorded at room temperature

Fig. 3 shows luminescence emission spectra of Li₂O–Al₂O₃–ZrO₂–SiO₂: TiO₂ glasses recorded at room temperature and excited at a wavelength corresponding to their absorption edge. The spectrum of the sample T₂ exhibited a broad emission band with a large Stokes shift with the meta-centre at about 508 nm. As the concentration of TiO₂ is increased, the luminescence intensity is observed to increase. The optical absorption and ESR spectra of these glasses are due to existence of Ti³⁺ ions in octahedral coordination with tetrahedral compression. For d¹ ions in tetragonally compressed octahedron, the ground state is B₂Ixy>. Hence, the bands observed in the optical absorption spectra at about 540 and 690 nm of the studied glass are assigned to ²B_{2g}→²B_{1g} and ²B_{2g} →²A_{1g} transitions of the Ti³⁺ ions respectively [4, 5]. With an increase in concentration of TiO₂, a gradual decay of these bands could clearly be seen; an observation indicating that there is a decreasing fraction of Ti⁴⁺ ions that have been reduced in to Ti³⁺ ions. The analysis of the ESR spectral results also supports this fact. In the ESR spectra, the asymmetric intense line observed at g=1.990 is due to tetragonally compressed octahedral sites of Ti³⁺ ions in the ground state B₂Ixy>.

Fig. 3 shows luminescence emission spectra of Li₂O-Al₂O₃-ZrO₂-SiO₂: TiO₂ glasses recorded at room temperature

The luminescence band is attributed to radiative recombination of self-trapped excitons (STEs) localized on a substitutionally positioned octahedral Ti^{4+} ions.

Conclusions:

 $Li_2O-Al_2O_3-ZrO_2-SiO_2$ glasses mixed with different concentrations of TiO₂ (ranging from 0 to 5.0 mol %) has been synthesized and a variety of properties optical absorption, ESR and photoluminescence were investigated. The optical absorption and ESR studies indicated that a proportion of titanium ions exist in the Ti³⁺ state in addition to the Ti⁴⁺ state in these samples. However, the reduction factor appears to decrease with increasing content of TiO₂. Photoluminescence spectra of thee samples excited at wavelengths corresponding to their absorption edges exhibit a broad emission band in the visible region. The excitation of substitutionally positioned octahedral Ti⁴⁺ ions is identified to be responsible for the observed luminescence emission. The luminescence efficiency is found to increase with the content of TiO₂. Finally it is concluded that there is an increasing content of TiO₂.

References:

- 1. Adbel Wahab F.A. and Adbel- Baki M., J. Non-Cryst. Solids, 2009, 2239-2249.
- 2. Ewais E.M.M., Attia M.A.A., Abousree-Hegazy A. and Bordia R.K., Ceram. Int., 2010, 36, 1327-1332.
- 3. Malek M., Khani M.R., Alizadeh P. and Kazemian H., Ceram. Int., 2009, 35, 1689-1692.
- 4. Aboukais A., Bogomolova L.D., Deshkovskay A.A., Jachkin Krasil V.A., Nikova N.A., rushinsky S.A., Tru O.A., Stefanovsky S.V. and Zhilinskaya E.A., Opt. Mater. 2002, 1, 95-302.
- 5. Watanabe M. and Hayashi T., J. Lumin., 2005, 112, 88-95.
