

International Journal of ChemTech Research

CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.8, No.12 pp 741-751, **2015**

Enhanced photoluminescence of Tb³⁺ co-doped La₂O₃:Bi³⁺nanophosphors material using ethylene glycol route

PVSSSN Reddy, Ch.Satya Kamal, K.Sujatha, T.Samuel, M.Indiradevi¹, Y.Rama Krishna² and K.Ramachandra Rao*

Crystal Growth and Nanoscience Research Centre,
Department of Physics, Government College (A), Rajahmundry-533105, A.P. India.

¹Department of Physics, Andhra University, Visakhapatnam-A.P, India

²Department of Engg.Physics, Andhra University, Visakhapatnam-A.P, India

Abstract: Mixed color photoluminescence (PL) was observed from Bi³⁺ and rare earth Tb³⁺ co-doped La₂O₃ (La₂O₃:Bi³⁺,Tb³⁺) prepared nanophosphor powder. The phosphor powders were prepared by polyol method using ethylene glycol as capping agent. The phase formation, functional groups identification of as prepared samples and morphological studies were confirmed by XRD, FTIR, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Colours of PL emissions widely changed from green-orange region to blue on heating La₂O₃:Bi³⁺, Tb³⁺ phosphor powders from 700 to 900 °C. The observed emission peaks in PL from phosphor powder materials were assigned to either the broad emission originating from the transition in Bi³⁺ or the visible emission peaks originating transition from the Tb³⁺ ions. All emission peaks of PL are plotted using CIE coordinates.

Keywords: Polyol method, Lanthanum oxide, Bismuth, Rare earth co-doping, Phosphorous, Photoluminescence.

K.Ramachandra Rao et al /Int.J. ChemTech Res. 2015,8(12),pp 741-751.
