



## International Journal of ChemTech Research

CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.8, No.12 pp 643-650, **2015** 

## Response of Mineral Status to Nano-Fertilizer and Moisture Stress during Different Growth Stages of Cotton Plants.

Hussien M.M.<sup>1</sup>; Soad M. El-Ashry<sup>2</sup>; Wafaa M. Haggag<sup>3</sup> and Dalia M. Mubarak<sup>2</sup>\*

<sup>1</sup>Water Relations &Field Irrigation Dept.; <sup>2</sup>Soil & Water Use Dept. and <sup>3</sup>Pathology Dept., Agric. Div., NRC, Cairo, Egypt

**Abstract:** Pot experiment was conducted in the greenhouse of the National Research Centre during the 2014 summer season to investigate the effect of nano-fertilizer on mineral status of cotton plants grown under water stress. The treatments were as follows: a)-Water stress treatments: Missing of irrigation at budding (D1) and flowering stages (D2) more than regular irrigation (RI) as control. b)- Fertilizer treatments: 0.5 and 1.0 g  $\Gamma^1$  nano-phosphorus (nano-P) and distilled water as a control.

Generally, nano-fertilizer affects the macronutrients and micronutrients status under different irrigation treatments. Application of nano-P led to improve the nutrients uptake under stress conditions as well as regular irrigation. The interaction effect of nano-fertilizer and drought through some growth stages of cotton plants indicated that application of nano-P at rate  $0.5 \text{ g } \Gamma^1$  promote the nutrients uptake under D1, while  $1.0 \text{ g } \Gamma^1$  depicted the best nano-P fertilizer rate enhanced the nutrients uptake under D2 condition.

**keywords:** Cotton ( $Gossipyum\ barbadense\ L$ .)-irrigation - nano-phosphorus - macronutrients - micronutrients - uptake.

**Dalia M. Mubarak et al** /Int.J. ChemTech Res. 2015,8(12),pp 643-650.

\*\*\*\*