

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.8, No.12 pp 319-328, 2015

Structural, Morphological and FTIR of PVDF-HFP and Lithium Tetrafluoroborate Salt as Polymer Electrolyte membrane in Lithium ion Batteries

Sangeetha Mahendrakar¹*, Mallikarjun Anna², Jaipal Reddy M³

¹Department of Humanities and Sciences, Guru Nanak Institutions Technical Campus, Ibrahimpatnam, 501506, Hyderabad, Telangana, India
²Department of Humanities and Sciences, AVN Institute of Engineering and Technology, Ramdas Pally, Koheda, Ibrahimpatnam, 501510, Hyderabad, Telangana, India
³Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology,

Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology Kokapet, 500075, Gandipet, Hyderabad, Telangana, India.

Abstract: Thin film solid polymer electrolyte membrane used in Lithium ion batteries consisting of Poly (vinylidenefluroride-co-hexafluoropropylene) (PVDF-HFP) with various concentrations of lithium tetrafluoroborate (LiBF₄) salt have been prepared by solution casting technique. The structural and Morphological properties of the polymer films are studied by XRD and SEM. The result analysis of XRD reveals the amorphous nature of PVDF-HFP – LiBF₄ polymer-salt composite matrix. SEM studies reveals good blending of polymer - salt composite matrix and enhancing morphology. The complexation of the polymer and salt matrix was confirmed by FTIR analysis. Enhancement in ionic conductivity was explained on the basis of amorphous phase of PVDF-HFP complexed with LiBF₄ salt. The highest ionic conductivity was $1.965 \times 10^{-3} SCm^{-1}$ for 60 wt% PVDF – HFP polymer: 40 wt of LiBF₄ salt at 363 K. The temperature dependence ionic conductivity of the polymer electrolyte obeys the Volgel – Tamman - Fulcher (VTF) relationship. **Keywords:** Solution casting technique, PVDF-HFP, LiBF₄, Morphology, XRD, SEM, VTF relationship and FTIR.

Sangeetha Mahendrakar et al /Int.J. ChemTech Res. 2015,8(12),pp 319-328.
