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Abstract: In the 1970s, nonlinear oscillations and bifurcations were discovered first by
modelling and then by experiments for the autocatalytic Brusselators and the Belousov-
Zhabotinsky (BZ) chemical reaction.  The autocatalytic chemical reaction phenomenon
plays a vital role for the breakdown of the stability of the thermodynamical branch. This
research work investigates the dynamics and qualitative properties of the autocatalytic
Brusselator chemical reaction. Then this work discusses the global anti-synchronization
of the identical Brusselator chemical reaction systems via integral sliding mode control
(ISMC). The main global anti-synchronization result for the Brusselator chemical
reaction systems is established using Lyapunov stability theory. MATLAB plots have
been shown to illustrate all the main results discussed in this work.
Keywords: Chaos, chaotic systems, chemical reactor, Brusselator, chemical engineering,
sliding mode control, anti-synchronization, nonlinear oscillations, chaos control, stability.

1. Introduction

A dynamical system is called chaotic if it satisfies the three properties: boundedness, infinite recurrence
and sensitive dependence on initial conditions [1-2]. Chaos theory investigates the qualitative and numerical
study of unstable aperiodic behaviour in deterministic nonlinear dynamical systems.

In 1963, Lorenz [3] discovered a 3-D chaotic system when he was studying a 3-D weather model for
atmospheric convection. After a decade, Rössler [4] discovered a 3-D chaotic system, which was constructed
during the study of a chemical reaction. These classical chaotic systems paved the way to the discovery of many
3-D chaotic systems such as Arneodo system [5], Sprott systems [6], Chen system [7], Lü-Chen system [8], Cai
system [9], Tigan system [10], etc.  Many new chaotic systems have been also discovered in the recent years
like Sundarapandian systems [11, 12], Vaidyanathan systems [13-43], Pehlivan system [44], Pham system [45],
etc.

Recently, there is significant result in the chaos literature in the synchronization of physical and
chemical systems. A pair of systems called master and slave systems are considered for the synchronization
process and the design goal of anti-synchronization is to device a feedback mechanism so that the state
trajectories of the master and slave systems are equal in magnitude and opposite in sign asymptotically. Because
of the butterfly effect which causes exponential divergence of two trajectories of the system starting from
nearby initial conditions, the anti-synchronization of chaotic systems is seemingly a challenging research
problem.

In control theory, active control method is used when the parameters are available for measurement [46-
65]. Adaptive control is a popular control technique used for stabilizing systems when the system parameters
are unknown [66-80]. There are also other popular methods available for control and synchronization of
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systems such as backstepping control method [81-87], sliding mode control method [88-100], intelligent control
[101-110], etc.

Recently, chaos theory is found to have important applications in several areas such as chemistry [111-
128], biology [129-160], memristors [161-163], electrical circuits [164], etc.

In the 1970s, nonlinear oscillations and bifurcations were discovered first by modelling and then by
experiments for the autocatalytic Brusselators and the Belousov-Zhabotinsky chemical reaction [165-166].
The autocatalytic chemical reaction phenomenon plays a vital role for the breakdown of the stability of the
thermodynamical branch.

A simple chemical model that exhibits complex dynamics is the Brusselator model, which is an
example of an autocatalytic oscillating chemical reaction [167]. This model could present the limit cycle, Hopf
bifurcation and also the chaotic behaviour when a certain sinusoidal force acts on the system. This force could
be created by the heat convection, microwaves etc., that its behaviour is sinusoidal with a small intensity.

This paper describes the modelling and properties of the Brusselator dynamics. This paper also derives
new results of anti-synchronization design for the identical Brusselator chemical reaction systems via integral
sliding mode control [168]. The main control result is established using Lyapunov stability theory [169].

2. Brusselator Chemical Reaction Model

The mechanism for the classical Brusselator chemical model [167] is given as follows:

1kA X¾¾® (1)
2kB X Y D+ ¾¾® + (2)

32 3kX Y X+ ¾¾® (3)
4kX E¾¾® (4)

The Brusselator chemical reaction model describes a chemical system that converts a reactant A to  a
final product E through four steps and four intermediate species, , ,X B Y and .D  The  steps  (2)  and  (3)  are
bimolecular, and autocatalytic trimolecular reactions respectively. Based on the mechanism of Brusselator
reaction, product E is resulted from species X in step (4). In addition, species X is the result of steps (1) and
(3). These relationships could show the sensitivity to initial conditions.

We denote the concentrations of , , , , ,A B D E X and Y by[ ],A [ ],B [ ],D [ ],E [ ],X and
[ ],Y respectively. Then the evolutions of the concentrations of the species as a function of the time t using mass
action law are   given as follows:
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where , ( 1, 2,3, 4)jk j = is the reaction rate and represented in units of 1( / )mole l s -× .
Since the species D and E do not influence others, we ignore (7) and (8). Moreover, for simplicity, we suppose
that [ ]A and [ ]B are maintained constant, i.e. [ ]A a= and [ ] ,B b= where , 0,a b > and all reaction rates

,jk ( 1,2,3,4)j = are set equal to unity.
Thus, the ordinary differential equations that describe the Brusselator chemical reaction are as follows:

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

2

2

( 1)
d X

a X Y b X
dt

d Y
b X X Y

dt

ì
= + - +ïï

í
ï = -ïî

(11)

To simplify the notation, we define [ ]x X= and [ ].y Y=
Then we can represent the Brusselator chemical reaction given in (11) in a compact form as follows.

2

2

( 1)x a x y b x
y bx x y

ì = + - +ï
í

= -ïî

&

&
(12)

Thus, the unique equilibrium point of (12) is easily obtained as 0 : ( , ) , .bE x y a
a

æ ö= ç ÷
è ø

The Jacobian matrix of (12) at the equilibrium point 0E is obtained as
2

0 0 2

1
( )

b a
J J E

b a
é ù-

= = ê ú- -ë û
(13)

The characteristic equation of the Jacobian matrix 0J is easily obtained as
2 2 2( 1) 0a b al l+ - + + = (14)

By Routh’s stability theorem, the equilibrium point 0E is stable if and only if
2 2 1 0a b- + >   or 2 1b a< + (15)

Also, the equilibrium point 0E is unstable if
2 2 1 0a b- + <  or 2 1b a> + (16)

Therefore, for 2 1,b a> + the Brusselator chemical model (12) has a limit cycle.

Assuming 2 1,b a= +  the Brusselator chemical model (12) exhibits Hopf bifurcation.

For numerical simulations, we take 1  / ,a mole l= 3  /b mole l= where 2 1.b a> +
We take the initial values of the concentrations x and y as (0) 0.1 / ,x mole l= (0) 0.5  / .y mole l=

Figure 1 shows the limit cycle of the Brusselator chemical reaction system (12).

Figure 1. Limit cycle of the Brusselator chemical reaction system
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3. Anti-Synchronization of Identical Brusselator Chemical Reaction Systems

In this section, we use integral sliding mode control to achieve global and asymptotic anti-
synchronization of the identical Brusselator chemical reaction systems. We use Lyapunov stability theory to
prove the main result derived in this section for the Brusselator chemical reaction systems.

As the master system, we consider the Brusselator chemical reaction system given by

2
1 1 1 1

2
1 1 1 1

( 1)x a x y b x

y bx x y

ì = + - +ï
í

= -ïî

&

&
(17)

As the slave system, we consider the Brusselator chemical reaction system with controls given by
2

2 2 2 2
2

2 2 2 2

( 1) x

y

x a x y b x u

y bx x y u

ì = + - + +ï
í

= - +ïî

&

&
(18)

The anti-synchronization error between the Brusselator reaction systems (17) and (18) is defined by

2 1

2 1

x

y

e x x
e y y
= +ìï

í = +ïî
(19)

We note that the errors 0xe ® and 0ye ® if and only if 2 1x x®- and 2 1.y y®-  Thus, when the identical
Brusselator  chemical  reaction  systems  (17)  and  (18)  are  anti-synchronized,  their  states  will  be  equal  in
magnitude, but opposite in sign.
The error dynamics is obtained as

2 2
2 2 1 1

2 2
2 2 1 1

2 ( 1)x x x

y x y

e a x y x y b e u

e be x y x y u

ì = + + - + +ï
í

= - - +ïî

&
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(20)

Based on the sliding mode control theory [168], the integral sliding surface of each error variable is defined as
follows:

0 0

0 0

( ) ( )

( ) ( )

t t

x x x x x x
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y y y y y y
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(21)

The derivative of each equation in (21) yields

x x x x

y y y y

s e e
s e e

l
l

= +ìï
í = +ïî

& &

& &
(22)

The Hurwitz condition is satisfied if ,x yl l are positive constants.
Based on the exponential reaching law [168], we set

sgn( )
sgn( )

x x x x x

y y y y y

s s k s
s s k s

h
h

= - -ìï
í = - -ïî

&

&
(23)

Comparing equations (22) and (23), we get
sgn( )
sgn( )

x x x x x x x

y y y y y y y

e e s k s
e e s k s

l h
l h

+ =- -ìï
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&

&
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Using Eq. (20), we can rewrite Eq. (24) as follows:
2 2
2 2 1 1
2 2
2 2 1 1

2 ( 1) sgn( )

sgn( )
x x x x x x x x

x y y y y y y y

a x y x y b e u e s k s

be x y x y u e s k s

l h

l h

ì + + - + + + =- -ï
í

- - + + =- -ïî
(25)

From Eq. (25), the control laws are obtained as follows:
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2 2
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2 2
2 2 1 1
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sgn( )
x x x x x x x x

y x y y y y y y

u a x y x y b e e s k s

u be x y x y e s k s

l h

l h
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í
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(26)

Next, we state and prove the main result of this section.

Theorem 1. The Brusselator chemical reaction systems (17) and (18) are globally and asymptotically
anti-synchronized for all initial conditions by the integral sliding mode control law (26), where the constants

, ,x yl l , ,x yh h , ,x yk k are all positive.

Proof. This result is proved using Lyapunov stability theory [169].

We consider the following quadratic Lyapunov function

( )2 21( , )
2x y x yV s s s s= + (27)

where ,x ys s are as defined in (21).
The time-derivative of V is obtained as

x x y yV s s s s= +& & & (28)
Substituting from Eq. (23) into (28), we get

[ sgn( ) ] [ sgn( ) ]x x x x x y y y y yV s s k s s s k sh h= - - + - -& (29)
Simplifying Eq. (29), we obtain

2 2
x x x x y y y yV s k s s k sh h= - - - -& (30)

Since , 0x yk k > and ,x yh h it follows from (30) that V& is a negative definite function.

Thus, by Lyapunov stability theory [169], it follows that ( , ) (0,0)x ys s ® as .t ®¥

Hence, it is immediate that ( , ) (0,0)x ye e ® as .t ®¥

This completes the proof. n

4. Numerical Simulations

We use classical fourth-order Runge-Kutta method in MATLAB with step-size 810h -=  for solving the
system of differential equations (17) and (18), when the integral sliding mode controller (26) is implemented.

The parameter values of the Brusselators (17) and (18) are  taken as
1,   3a b= = (27)

We take the sliding constants as
0.1, 0.1, 20x y x y x yk kl l h h= = = = = = (28)

We take the initial conditions of the Brusselator chemical reaction system (17) as
1 1(0) 1.4,  (0) 5.8x y= = (29)

We take the initial conditions of the novel chemical reactor (18) as
2 2(0) 7.5,  (0) 15.2x y= = (30)

Figures 2-3 shows the anti-synchronization of the Brusselator chemical reaction systems (17) and (18).

Figure 4 shows the time-history of the anti-synchronization errors , .x ye e
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Figure 2. Anti-synchronization of the states 1x and 2x

Figure 3. Anti-synchronization of the states 1y and 2y

Figure 4. Time-history of the anti-synchronization errors ,x ye e
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5. Conclusions

In this paper, we investigated the dynamics and qualitative properties of the autocatalytic
Brusselator chemical reaction. Then we discussed the global anti-synchronization of the identical
Brusselator chemical reaction systems via integral sliding mode control (ISMC). The main global anti-
synchronization result for the Brusselator chemical reaction systems was established using Lyapunov
stability theory. MATLAB plots were shown to illustrate all the main results discussed in this work for the
Brusselator chemical system.
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