

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN : 0974-4290 Vol.6, No.11, pp 4650-4655, Oct-Nov **2014**

Molecular Formula as a Path Using Periodic Table

M. Yamuna*

SAS, VIT University, Vellore, Tamilnadu, India, 632 014

*Corres.author: myamuna@vit.ac.in

Abstract: A molecular formula is a way of expressing information about the proportions of atoms that constitute a particular chemical compound. Using a single line of chemical element symbols. This is the best way to represent any chemical compound. Periodic table in one way has a position in some cell for all the chemical elements based on their atomic numbers. Hexadecimal color codes are used in identifying different colors using color codes. In this paper we propose a method of representing any chemical formula as a path graph using the position of the chemical elements in the periodic table and the colors assigned to them. **Key Words:** Molecular formula, chemicals, Periodic Table, Path, Graph, color.

Introduction

Graph theory is extensively used in chemistry. They are used in drawing the structural formula, chem spider representation and so on. It is also used in finding the wiener index, randic index. In [1] the structural formula and Huffmann codes are used to define genetic codes. In [2] dominating set is used in molecular formula encryption.

In this developing society new inventions are part of regular routine and corresponding details of them also happens each day. Many inventions are finally represented using chemical formulas and molecular formulas. In this paper we propose a method representing a chemical formula as a path using periodic table and hexadecimal colors.

Preliminary Note

Graph

In a mathematician's terminology, a graph is a collection of points and lines connecting some subset of them. The points of a graph are most commonly known as graph vertices, but may also be called nodes or simply points. Similarly, the lines connecting the vertices of a graph are most commonly known as graph edges, but may also be called arcs or lines [3]. A weighted graph is a graph in which each edge is assigned some numerical value called the weight of the graph.

Path

In graph theory, a path in a graph is a finite or infinite sequence of edges which connect a sequence of vertices which, by most definitions, are all distinct from one another. [4]

A path with n – vertices is denoted by Pn. The following snapshot 1 [5] provides examples of paths with n = 1, 2, 3, 4 vertices.

www.sphinxsai.com

Snapshot 1

Hexadecimal Colors

Web colors are colors used in designing web pages, and the methods for describing and specifying those colors. Colors may be specified as an RGB triplet or in hexadecimal format. A color is specified according to the intensity of its red, green and blue components, each represented by eight bits. Thus, there are 24 bits used to specify a web color, and 16,777,216 colors that may be so specified. [6]

Materials and Methods

Construction of Color Periodic Table

We choose the usual periodic table. In periodic table colors are used to identify metals, nonmetals etc. We modify the original periodic table by using distinct colors to distinct cells of the table using hexadecimal colors. Except for this, the table looks like the original one. A sample periodic table is given in table 1.

It is seen in table 1 that different colors are used and it resembles the original periodic table. The color codes and the corresponding atomic numbers as used in table 1 is provided in table 2.

Construction of Graph from Color Periodic Table

We use paths for constructing graphs. We consider the molecular formula of the compound. We count the number of elements in the compound (say x). Then we choose a path with x + 1 vertices. We color the edges of the path choosing the color from table in the order in which they appear in the compound. The edges receive weights equal to the number of times each element occurs. For example if the compound is Na₂Cl₃H, then the edge representing Na receives weight 2, the edge representing Cl receives weight 3 and the edge representing H receives weight 1.

Finally we obtain a weighted path with edge colors representing elements. The graph corresponding to Na₂Cl₃H is

Using this method any chemical compound, drug can be represented using their molecular formula. The tree for some examples is provided in table 3. The ball and stick models are from [7]

Table 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	ffa091 fffab3 2a3a37 f9cce0 bb3000 7faca8 9698c8 919192 867fa5 7fd2a7 b2860e ce8587 7fadbf bed3ec c2b67c bce1b9 2e08d0 300f22 c893c7 f689ad bce5e3 d1b084 #000000 6d8332 7fab92 a1c5e5 fac6aa 02fb48 c4c4c4 7c6d8e fee2c4	32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 52 53 54 55 56 57-71 72 73 74 75	9ab9d4 7fb9b5 ff7fff d5cf7f af9c89 833806 9ae803 396c03 b49eb5 b8ffdd 9aa9bb d3b1d3 bce5e3 bd7fa2 19252e e3d8cc 00ff84 9a9a9a 284e4b c4c4c4 fac6aa bed3ec bde2ba e37fa0 92c292 ho colour 77376c 7fa9ff 9d0522 86aac1	76 77 78 79 80 81 82 83 84 85 86 87 88 89-103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 57 58 59		c5bcd3 c09fb8 5e8531 9590a2 9f9e45 e2ce92 f0bb88 d8aa8a 735a4a d6ae94 68992e 8e6317 f0e2a7 b0e24f 8cd6a6 88928c b6c6b2 a783c1 86bed2 a2aa81 f7e7b0 d5c27f b2b99f adc669 ae9596 fcaeb3 d6f1fd 7ffff4 ebe2d2 c7ad7f 98c08a	60 61 62 63 64 65 66 67 68 69 70 71 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103	 a55582 d587f6 c4b7ca 877fa3 98948f ecfdb0 cdd1be acbf0d 849198 918498 a6b6b9 8b978f 8f9382 83a592 bd9981 c4bbb5 889194 9da290 9eaba5 88a698 05303e cfe5e3 8d9393 8.60E+10 bce0c1 a8aa94 cc86c6
CO	note: lanthanide series: 57-71 Actinide Series: 89-103							

Table 2

S. **Ball and Stick** Molecular Path No Representation Formula 1 $C_2H_5NO_2$ 2 5 1 2 Glycine 2 H_2O 2 1 Water C_6H_6 3 6 6 Benzene $C_8H_{10}N_4O_2$ 4 8 10 4 2 Caffine 5 $C_6H_{12}O_6$ 6 12 6 d – glucose

Table 3

Molecular formula represents the chemical composition of any compound. Any new finding can be encrypted using the method explained. Suppose the received tree is

From table 1 the molecular formula is C_{60} which represents [5]

Fullerene

Now while using colors we observe that some colors look similar but are different. Visually it is tough to find the difference between both colors. This means that looking at the colors and then trying to identify the elements may lead to errors. To avoid this we can include one more weight to the edges which will represent the color codes. The color codes can be converted into smaller numbers and hence used as the weight of the graph. This will improve the representation.

Conclusion

Most of the new inventions like drugs, detergents, etc are finally represented using molecular formula. Communications about these formulas is mandatory and unavoidable. This proposed representation of molecular formula can be used for safe communication of these details. Numerous weighted paths are available in public domain and it is tough to fine the difference between the molecular paths and the usual ones and hence can be used for representing any molecular formula.

Acknowledgment

I thank my student Rishabh Sharma, II year B. Tech IT, VIT University for his effort in designing the color periodic table.

References

- 1. M. Yamuna, K. Karthika, Chemical Formula: Encryption Using Graph Domination and Molecular Biology, International Journal of Chem Tech Research, Vol. 5, No 6, Oct Dec 2013 (2747 2756).
- M. Yamuna, B. Joseph Sasikanth Reddy, Nithin Kumar Reddy, Paladugual Raghuram, Genetic Code for Amino Acids Using Huffman Trees, International Journal of Chem Tech Research, Vol. 6, No 1, Jan–Mar – 2014 (53 – 63).
- 3. http://mathworld.wolfram.com/Graph.html.
- 4. http://en.wikipedia.org/wiki/Path_(graph_theory).
- 5. http://www.personal.kent.edu/~rmuhamma/GraphTheory/MyGraphTheory/trees.htm.
- 6. http://en.wikipedia.org/wiki/Web_colors.
- 7. http://www.nyu.edu/pages/mathmol/library/.